Evaluate
-\frac{2\left(x-2\right)}{x\left(x+6\right)}
Expand
-\frac{2\left(x-2\right)}{x\left(x+6\right)}
Graph
Share
Copied to clipboard
\frac{\frac{2}{x}-\frac{x}{x}}{3+\frac{x}{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x}{x}.
\frac{\frac{2-x}{x}}{3+\frac{x}{2}}
Since \frac{2}{x} and \frac{x}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2-x}{x}}{\frac{3\times 2}{2}+\frac{x}{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2}{2}.
\frac{\frac{2-x}{x}}{\frac{3\times 2+x}{2}}
Since \frac{3\times 2}{2} and \frac{x}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{2-x}{x}}{\frac{6+x}{2}}
Do the multiplications in 3\times 2+x.
\frac{\left(2-x\right)\times 2}{x\left(6+x\right)}
Divide \frac{2-x}{x} by \frac{6+x}{2} by multiplying \frac{2-x}{x} by the reciprocal of \frac{6+x}{2}.
\frac{4-2x}{x\left(6+x\right)}
Use the distributive property to multiply 2-x by 2.
\frac{4-2x}{6x+x^{2}}
Use the distributive property to multiply x by 6+x.
\frac{\frac{2}{x}-\frac{x}{x}}{3+\frac{x}{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x}{x}.
\frac{\frac{2-x}{x}}{3+\frac{x}{2}}
Since \frac{2}{x} and \frac{x}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2-x}{x}}{\frac{3\times 2}{2}+\frac{x}{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2}{2}.
\frac{\frac{2-x}{x}}{\frac{3\times 2+x}{2}}
Since \frac{3\times 2}{2} and \frac{x}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{2-x}{x}}{\frac{6+x}{2}}
Do the multiplications in 3\times 2+x.
\frac{\left(2-x\right)\times 2}{x\left(6+x\right)}
Divide \frac{2-x}{x} by \frac{6+x}{2} by multiplying \frac{2-x}{x} by the reciprocal of \frac{6+x}{2}.
\frac{4-2x}{x\left(6+x\right)}
Use the distributive property to multiply 2-x by 2.
\frac{4-2x}{6x+x^{2}}
Use the distributive property to multiply x by 6+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}