Evaluate
2
Factor
2
Share
Copied to clipboard
\frac{\left(\frac{2}{m}+\frac{2}{n}\right)mn}{m+n}
Divide \frac{2}{m}+\frac{2}{n} by \frac{m+n}{mn} by multiplying \frac{2}{m}+\frac{2}{n} by the reciprocal of \frac{m+n}{mn}.
\frac{\left(\frac{2n}{mn}+\frac{2m}{mn}\right)mn}{m+n}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m and n is mn. Multiply \frac{2}{m} times \frac{n}{n}. Multiply \frac{2}{n} times \frac{m}{m}.
\frac{\frac{2n+2m}{mn}mn}{m+n}
Since \frac{2n}{mn} and \frac{2m}{mn} have the same denominator, add them by adding their numerators.
\frac{\frac{\left(2n+2m\right)m}{mn}n}{m+n}
Express \frac{2n+2m}{mn}m as a single fraction.
\frac{\frac{2m+2n}{n}n}{m+n}
Cancel out m in both numerator and denominator.
\frac{2m+2n}{m+n}
Cancel out n and n.
\frac{2\left(m+n\right)}{m+n}
Factor the expressions that are not already factored.
2
Cancel out m+n in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}