Verify
true
Share
Copied to clipboard
\frac{\frac{2}{9}\times \frac{3+2}{3}\times \frac{11\times 9+4}{9}+\frac{4}{17}}{\frac{\frac{3}{4}\times \frac{1\times 7+4}{7}}{\frac{1\times 2+1}{2}}-\frac{11}{28}}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Multiply 1 and 3 to get 3.
\frac{\frac{2}{9}\times \frac{5}{3}\times \frac{11\times 9+4}{9}+\frac{4}{17}}{\frac{\frac{3}{4}\times \frac{1\times 7+4}{7}}{\frac{1\times 2+1}{2}}-\frac{11}{28}}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Add 3 and 2 to get 5.
\frac{\frac{2\times 5}{9\times 3}\times \frac{11\times 9+4}{9}+\frac{4}{17}}{\frac{\frac{3}{4}\times \frac{1\times 7+4}{7}}{\frac{1\times 2+1}{2}}-\frac{11}{28}}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Multiply \frac{2}{9} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{10}{27}\times \frac{11\times 9+4}{9}+\frac{4}{17}}{\frac{\frac{3}{4}\times \frac{1\times 7+4}{7}}{\frac{1\times 2+1}{2}}-\frac{11}{28}}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Do the multiplications in the fraction \frac{2\times 5}{9\times 3}.
\frac{\frac{10}{27}\times \frac{99+4}{9}+\frac{4}{17}}{\frac{\frac{3}{4}\times \frac{1\times 7+4}{7}}{\frac{1\times 2+1}{2}}-\frac{11}{28}}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Multiply 11 and 9 to get 99.
\frac{\frac{10}{27}\times \frac{103}{9}+\frac{4}{17}}{\frac{\frac{3}{4}\times \frac{1\times 7+4}{7}}{\frac{1\times 2+1}{2}}-\frac{11}{28}}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Add 99 and 4 to get 103.
\frac{\frac{10\times 103}{27\times 9}+\frac{4}{17}}{\frac{\frac{3}{4}\times \frac{1\times 7+4}{7}}{\frac{1\times 2+1}{2}}-\frac{11}{28}}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Multiply \frac{10}{27} times \frac{103}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{1030}{243}+\frac{4}{17}}{\frac{\frac{3}{4}\times \frac{1\times 7+4}{7}}{\frac{1\times 2+1}{2}}-\frac{11}{28}}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Do the multiplications in the fraction \frac{10\times 103}{27\times 9}.
\frac{\frac{17510}{4131}+\frac{972}{4131}}{\frac{\frac{3}{4}\times \frac{1\times 7+4}{7}}{\frac{1\times 2+1}{2}}-\frac{11}{28}}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Least common multiple of 243 and 17 is 4131. Convert \frac{1030}{243} and \frac{4}{17} to fractions with denominator 4131.
\frac{\frac{17510+972}{4131}}{\frac{\frac{3}{4}\times \frac{1\times 7+4}{7}}{\frac{1\times 2+1}{2}}-\frac{11}{28}}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Since \frac{17510}{4131} and \frac{972}{4131} have the same denominator, add them by adding their numerators.
\frac{\frac{18482}{4131}}{\frac{\frac{3}{4}\times \frac{1\times 7+4}{7}}{\frac{1\times 2+1}{2}}-\frac{11}{28}}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Add 17510 and 972 to get 18482.
\frac{\frac{18482}{4131}}{\frac{\frac{3}{4}\times \frac{7+4}{7}}{\frac{1\times 2+1}{2}}-\frac{11}{28}}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Multiply 1 and 7 to get 7.
\frac{\frac{18482}{4131}}{\frac{\frac{3}{4}\times \frac{11}{7}}{\frac{1\times 2+1}{2}}-\frac{11}{28}}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Add 7 and 4 to get 11.
\frac{\frac{18482}{4131}}{\frac{\frac{3\times 11}{4\times 7}}{\frac{1\times 2+1}{2}}-\frac{11}{28}}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Multiply \frac{3}{4} times \frac{11}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{18482}{4131}}{\frac{\frac{33}{28}}{\frac{1\times 2+1}{2}}-\frac{11}{28}}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Do the multiplications in the fraction \frac{3\times 11}{4\times 7}.
\frac{\frac{18482}{4131}}{\frac{\frac{33}{28}}{\frac{2+1}{2}}-\frac{11}{28}}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Multiply 1 and 2 to get 2.
\frac{\frac{18482}{4131}}{\frac{\frac{33}{28}}{\frac{3}{2}}-\frac{11}{28}}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Add 2 and 1 to get 3.
\frac{\frac{18482}{4131}}{\frac{33}{28}\times \frac{2}{3}-\frac{11}{28}}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Divide \frac{33}{28} by \frac{3}{2} by multiplying \frac{33}{28} by the reciprocal of \frac{3}{2}.
\frac{\frac{18482}{4131}}{\frac{33\times 2}{28\times 3}-\frac{11}{28}}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Multiply \frac{33}{28} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{18482}{4131}}{\frac{66}{84}-\frac{11}{28}}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Do the multiplications in the fraction \frac{33\times 2}{28\times 3}.
\frac{\frac{18482}{4131}}{\frac{11}{14}-\frac{11}{28}}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Reduce the fraction \frac{66}{84} to lowest terms by extracting and canceling out 6.
\frac{\frac{18482}{4131}}{\frac{22}{28}-\frac{11}{28}}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Least common multiple of 14 and 28 is 28. Convert \frac{11}{14} and \frac{11}{28} to fractions with denominator 28.
\frac{\frac{18482}{4131}}{\frac{22-11}{28}}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Since \frac{22}{28} and \frac{11}{28} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{18482}{4131}}{\frac{11}{28}}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Subtract 11 from 22 to get 11.
\frac{18482}{4131}\times \frac{28}{11}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Divide \frac{18482}{4131} by \frac{11}{28} by multiplying \frac{18482}{4131} by the reciprocal of \frac{11}{28}.
\frac{18482\times 28}{4131\times 11}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Multiply \frac{18482}{4131} times \frac{28}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{517496}{45441}\times \frac{\frac{3}{4}+\frac{2}{3}}{\frac{3}{4}-\frac{2}{3}}-21>0
Do the multiplications in the fraction \frac{18482\times 28}{4131\times 11}.
\frac{517496}{45441}\times \frac{\frac{9}{12}+\frac{8}{12}}{\frac{3}{4}-\frac{2}{3}}-21>0
Least common multiple of 4 and 3 is 12. Convert \frac{3}{4} and \frac{2}{3} to fractions with denominator 12.
\frac{517496}{45441}\times \frac{\frac{9+8}{12}}{\frac{3}{4}-\frac{2}{3}}-21>0
Since \frac{9}{12} and \frac{8}{12} have the same denominator, add them by adding their numerators.
\frac{517496}{45441}\times \frac{\frac{17}{12}}{\frac{3}{4}-\frac{2}{3}}-21>0
Add 9 and 8 to get 17.
\frac{517496}{45441}\times \frac{\frac{17}{12}}{\frac{9}{12}-\frac{8}{12}}-21>0
Least common multiple of 4 and 3 is 12. Convert \frac{3}{4} and \frac{2}{3} to fractions with denominator 12.
\frac{517496}{45441}\times \frac{\frac{17}{12}}{\frac{9-8}{12}}-21>0
Since \frac{9}{12} and \frac{8}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{517496}{45441}\times \frac{\frac{17}{12}}{\frac{1}{12}}-21>0
Subtract 8 from 9 to get 1.
\frac{517496}{45441}\times \frac{17}{12}\times 12-21>0
Divide \frac{17}{12} by \frac{1}{12} by multiplying \frac{17}{12} by the reciprocal of \frac{1}{12}.
\frac{517496}{45441}\times 17-21>0
Cancel out 12 and 12.
\frac{517496\times 17}{45441}-21>0
Express \frac{517496}{45441}\times 17 as a single fraction.
\frac{8797432}{45441}-21>0
Multiply 517496 and 17 to get 8797432.
\frac{517496}{2673}-21>0
Reduce the fraction \frac{8797432}{45441} to lowest terms by extracting and canceling out 17.
\frac{517496}{2673}-\frac{56133}{2673}>0
Convert 21 to fraction \frac{56133}{2673}.
\frac{517496-56133}{2673}>0
Since \frac{517496}{2673} and \frac{56133}{2673} have the same denominator, subtract them by subtracting their numerators.
\frac{461363}{2673}>0
Subtract 56133 from 517496 to get 461363.
\text{true}
Compare \frac{461363}{2673} and 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}