Evaluate
\frac{49}{55}\approx 0.890909091
Factor
\frac{7 ^ {2}}{5 \cdot 11} = 0.8909090909090909
Share
Copied to clipboard
\frac{\frac{4}{10}+\frac{3}{10}}{\frac{6}{7}-\frac{1}{14}}
Least common multiple of 5 and 10 is 10. Convert \frac{2}{5} and \frac{3}{10} to fractions with denominator 10.
\frac{\frac{4+3}{10}}{\frac{6}{7}-\frac{1}{14}}
Since \frac{4}{10} and \frac{3}{10} have the same denominator, add them by adding their numerators.
\frac{\frac{7}{10}}{\frac{6}{7}-\frac{1}{14}}
Add 4 and 3 to get 7.
\frac{\frac{7}{10}}{\frac{12}{14}-\frac{1}{14}}
Least common multiple of 7 and 14 is 14. Convert \frac{6}{7} and \frac{1}{14} to fractions with denominator 14.
\frac{\frac{7}{10}}{\frac{12-1}{14}}
Since \frac{12}{14} and \frac{1}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{7}{10}}{\frac{11}{14}}
Subtract 1 from 12 to get 11.
\frac{7}{10}\times \frac{14}{11}
Divide \frac{7}{10} by \frac{11}{14} by multiplying \frac{7}{10} by the reciprocal of \frac{11}{14}.
\frac{7\times 14}{10\times 11}
Multiply \frac{7}{10} times \frac{14}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{98}{110}
Do the multiplications in the fraction \frac{7\times 14}{10\times 11}.
\frac{49}{55}
Reduce the fraction \frac{98}{110} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}