Evaluate
\frac{1}{6}\approx 0.166666667
Factor
\frac{1}{2 \cdot 3} = 0.16666666666666666
Graph
Share
Copied to clipboard
\frac{\frac{2}{4x+12}}{\frac{4}{2\left(x+3\right)}+\frac{1}{x+3}}
Factor 2x+6.
\frac{\frac{2}{4x+12}}{\frac{4}{2\left(x+3\right)}+\frac{2}{2\left(x+3\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x+3\right) and x+3 is 2\left(x+3\right). Multiply \frac{1}{x+3} times \frac{2}{2}.
\frac{\frac{2}{4x+12}}{\frac{6}{2\left(x+3\right)}}
Since \frac{4}{2\left(x+3\right)} and \frac{2}{2\left(x+3\right)} have the same denominator, add them by adding their numerators. Add 4 and 2 to get 6.
\frac{2\times 2\left(x+3\right)}{\left(4x+12\right)\times 6}
Divide \frac{2}{4x+12} by \frac{6}{2\left(x+3\right)} by multiplying \frac{2}{4x+12} by the reciprocal of \frac{6}{2\left(x+3\right)}.
\frac{2\left(x+3\right)}{3\left(4x+12\right)}
Cancel out 2 in both numerator and denominator.
\frac{2\left(x+3\right)}{3\times 4\left(x+3\right)}
Factor the expressions that are not already factored.
\frac{1}{2\times 3}
Cancel out 2\left(x+3\right) in both numerator and denominator.
\frac{1}{6}
Multiply 2 and 3 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}