Evaluate
-\frac{207}{1205}\approx -0.171784232
Factor
-\frac{207}{1205} = -0.17178423236514523
Share
Copied to clipboard
\frac{\frac{1}{2}-\frac{3}{5}}{\frac{5}{18}+\frac{7}{23}}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{5}{10}-\frac{6}{10}}{\frac{5}{18}+\frac{7}{23}}
Least common multiple of 2 and 5 is 10. Convert \frac{1}{2} and \frac{3}{5} to fractions with denominator 10.
\frac{\frac{5-6}{10}}{\frac{5}{18}+\frac{7}{23}}
Since \frac{5}{10} and \frac{6}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{1}{10}}{\frac{5}{18}+\frac{7}{23}}
Subtract 6 from 5 to get -1.
\frac{-\frac{1}{10}}{\frac{115}{414}+\frac{126}{414}}
Least common multiple of 18 and 23 is 414. Convert \frac{5}{18} and \frac{7}{23} to fractions with denominator 414.
\frac{-\frac{1}{10}}{\frac{115+126}{414}}
Since \frac{115}{414} and \frac{126}{414} have the same denominator, add them by adding their numerators.
\frac{-\frac{1}{10}}{\frac{241}{414}}
Add 115 and 126 to get 241.
-\frac{1}{10}\times \frac{414}{241}
Divide -\frac{1}{10} by \frac{241}{414} by multiplying -\frac{1}{10} by the reciprocal of \frac{241}{414}.
\frac{-414}{10\times 241}
Multiply -\frac{1}{10} times \frac{414}{241} by multiplying numerator times numerator and denominator times denominator.
\frac{-414}{2410}
Do the multiplications in the fraction \frac{-414}{10\times 241}.
-\frac{207}{1205}
Reduce the fraction \frac{-414}{2410} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}