Solve for W
W = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
Share
Copied to clipboard
\frac{\frac{2}{3}+\frac{2}{3}\left(-\frac{W}{2}\right)}{1-\frac{W}{3}}=\frac{10}{13}
Use the distributive property to multiply \frac{2}{3} by 1-\frac{W}{2}.
\frac{\frac{2}{3}+\frac{-2W}{3\times 2}}{1-\frac{W}{3}}=\frac{10}{13}
Multiply \frac{2}{3} times -\frac{W}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{2}{3}+\frac{-W}{3}}{1-\frac{W}{3}}=\frac{10}{13}
Cancel out 2 in both numerator and denominator.
\frac{\frac{2-W}{3}}{1-\frac{W}{3}}=\frac{10}{13}
Since \frac{2}{3} and \frac{-W}{3} have the same denominator, add them by adding their numerators.
\frac{2-W}{3\left(1-\frac{W}{3}\right)}=\frac{10}{13}
Express \frac{\frac{2-W}{3}}{1-\frac{W}{3}} as a single fraction.
\frac{2-W}{3-3\times \frac{W}{3}}=\frac{10}{13}
Use the distributive property to multiply 3 by 1-\frac{W}{3}.
\frac{2-W}{3+\frac{-3W}{3}}=\frac{10}{13}
Express -3\times \frac{W}{3} as a single fraction.
\frac{2-W}{3-W}=\frac{10}{13}
Cancel out 3 and 3.
-13\left(2-W\right)=10\left(W-3\right)
Variable W cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by 13\left(W-3\right), the least common multiple of 3-W,13.
-26+13W=10\left(W-3\right)
Use the distributive property to multiply -13 by 2-W.
-26+13W=10W-30
Use the distributive property to multiply 10 by W-3.
-26+13W-10W=-30
Subtract 10W from both sides.
-26+3W=-30
Combine 13W and -10W to get 3W.
3W=-30+26
Add 26 to both sides.
3W=-4
Add -30 and 26 to get -4.
W=\frac{-4}{3}
Divide both sides by 3.
W=-\frac{4}{3}
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}