Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\frac{2}{3}\times 6+\frac{\frac{1}{4}}{\frac{3}{2}}-\frac{\frac{4}{5}}{\frac{3}{10}}
Divide \frac{2}{3} by \frac{1}{6} by multiplying \frac{2}{3} by the reciprocal of \frac{1}{6}.
\frac{2\times 6}{3}+\frac{\frac{1}{4}}{\frac{3}{2}}-\frac{\frac{4}{5}}{\frac{3}{10}}
Express \frac{2}{3}\times 6 as a single fraction.
\frac{12}{3}+\frac{\frac{1}{4}}{\frac{3}{2}}-\frac{\frac{4}{5}}{\frac{3}{10}}
Multiply 2 and 6 to get 12.
4+\frac{\frac{1}{4}}{\frac{3}{2}}-\frac{\frac{4}{5}}{\frac{3}{10}}
Divide 12 by 3 to get 4.
4+\frac{1}{4}\times \frac{2}{3}-\frac{\frac{4}{5}}{\frac{3}{10}}
Divide \frac{1}{4} by \frac{3}{2} by multiplying \frac{1}{4} by the reciprocal of \frac{3}{2}.
4+\frac{1\times 2}{4\times 3}-\frac{\frac{4}{5}}{\frac{3}{10}}
Multiply \frac{1}{4} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
4+\frac{2}{12}-\frac{\frac{4}{5}}{\frac{3}{10}}
Do the multiplications in the fraction \frac{1\times 2}{4\times 3}.
4+\frac{1}{6}-\frac{\frac{4}{5}}{\frac{3}{10}}
Reduce the fraction \frac{2}{12} to lowest terms by extracting and canceling out 2.
\frac{24}{6}+\frac{1}{6}-\frac{\frac{4}{5}}{\frac{3}{10}}
Convert 4 to fraction \frac{24}{6}.
\frac{24+1}{6}-\frac{\frac{4}{5}}{\frac{3}{10}}
Since \frac{24}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
\frac{25}{6}-\frac{\frac{4}{5}}{\frac{3}{10}}
Add 24 and 1 to get 25.
\frac{25}{6}-\frac{4}{5}\times \frac{10}{3}
Divide \frac{4}{5} by \frac{3}{10} by multiplying \frac{4}{5} by the reciprocal of \frac{3}{10}.
\frac{25}{6}-\frac{4\times 10}{5\times 3}
Multiply \frac{4}{5} times \frac{10}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{25}{6}-\frac{40}{15}
Do the multiplications in the fraction \frac{4\times 10}{5\times 3}.
\frac{25}{6}-\frac{8}{3}
Reduce the fraction \frac{40}{15} to lowest terms by extracting and canceling out 5.
\frac{25}{6}-\frac{16}{6}
Least common multiple of 6 and 3 is 6. Convert \frac{25}{6} and \frac{8}{3} to fractions with denominator 6.
\frac{25-16}{6}
Since \frac{25}{6} and \frac{16}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{6}
Subtract 16 from 25 to get 9.
\frac{3}{2}
Reduce the fraction \frac{9}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}