\frac { \frac { 2 } { 2 } + 3 - 1,05 } { 3 + 1 \frac { - 2 } { 4 } }
Evaluate
\frac{59}{70}\approx 0,842857143
Factor
\frac{59}{2 \cdot 5 \cdot 7} = 0.8428571428571429
Share
Copied to clipboard
\frac{1+3-1,05}{3+\frac{1\times 4-2}{4}}
Divide 2 by 2 to get 1.
\frac{4-1,05}{3+\frac{1\times 4-2}{4}}
Add 1 and 3 to get 4.
\frac{2,95}{3+\frac{1\times 4-2}{4}}
Subtract 1,05 from 4 to get 2,95.
\frac{2,95}{3+\frac{4-2}{4}}
Multiply 1 and 4 to get 4.
\frac{2,95}{3+\frac{2}{4}}
Subtract 2 from 4 to get 2.
\frac{2,95}{3+\frac{1}{2}}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{2,95}{\frac{6}{2}+\frac{1}{2}}
Convert 3 to fraction \frac{6}{2}.
\frac{2,95}{\frac{6+1}{2}}
Since \frac{6}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{2,95}{\frac{7}{2}}
Add 6 and 1 to get 7.
2,95\times \frac{2}{7}
Divide 2,95 by \frac{7}{2} by multiplying 2,95 by the reciprocal of \frac{7}{2}.
\frac{59}{20}\times \frac{2}{7}
Convert decimal number 2,95 to fraction \frac{295}{100}. Reduce the fraction \frac{295}{100} to lowest terms by extracting and canceling out 5.
\frac{59\times 2}{20\times 7}
Multiply \frac{59}{20} times \frac{2}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{118}{140}
Do the multiplications in the fraction \frac{59\times 2}{20\times 7}.
\frac{59}{70}
Reduce the fraction \frac{118}{140} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}