Evaluate
\frac{25\sqrt{3}-48}{11}\approx -0.427157256
Share
Copied to clipboard
\frac{\frac{2\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{\left(1+3\sqrt{3}\right)\left(1-3\sqrt{3}\right)}}{1-\frac{3\left(1-\sqrt{3}\right)^{2}}{\left(1+3\sqrt{3}\right)^{2}}}
Rationalize the denominator of \frac{2\sqrt{3}\left(1-\sqrt{3}\right)}{1+3\sqrt{3}} by multiplying numerator and denominator by 1-3\sqrt{3}.
\frac{\frac{2\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{1^{2}-\left(3\sqrt{3}\right)^{2}}}{1-\frac{3\left(1-\sqrt{3}\right)^{2}}{\left(1+3\sqrt{3}\right)^{2}}}
Consider \left(1+3\sqrt{3}\right)\left(1-3\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\frac{2\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{1-\left(3\sqrt{3}\right)^{2}}}{1-\frac{3\left(1-\sqrt{3}\right)^{2}}{\left(1+3\sqrt{3}\right)^{2}}}
Calculate 1 to the power of 2 and get 1.
\frac{\frac{2\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{1-3^{2}\left(\sqrt{3}\right)^{2}}}{1-\frac{3\left(1-\sqrt{3}\right)^{2}}{\left(1+3\sqrt{3}\right)^{2}}}
Expand \left(3\sqrt{3}\right)^{2}.
\frac{\frac{2\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{1-9\left(\sqrt{3}\right)^{2}}}{1-\frac{3\left(1-\sqrt{3}\right)^{2}}{\left(1+3\sqrt{3}\right)^{2}}}
Calculate 3 to the power of 2 and get 9.
\frac{\frac{2\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{1-9\times 3}}{1-\frac{3\left(1-\sqrt{3}\right)^{2}}{\left(1+3\sqrt{3}\right)^{2}}}
The square of \sqrt{3} is 3.
\frac{\frac{2\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{1-27}}{1-\frac{3\left(1-\sqrt{3}\right)^{2}}{\left(1+3\sqrt{3}\right)^{2}}}
Multiply 9 and 3 to get 27.
\frac{\frac{2\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{-26}}{1-\frac{3\left(1-\sqrt{3}\right)^{2}}{\left(1+3\sqrt{3}\right)^{2}}}
Subtract 27 from 1 to get -26.
\frac{-\frac{1}{13}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{1-\frac{3\left(1-\sqrt{3}\right)^{2}}{\left(1+3\sqrt{3}\right)^{2}}}
Divide 2\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right) by -26 to get -\frac{1}{13}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right).
\frac{-\frac{1}{13}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{1-\frac{3\left(1-2\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)}{\left(1+3\sqrt{3}\right)^{2}}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{3}\right)^{2}.
\frac{-\frac{1}{13}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{1-\frac{3\left(1-2\sqrt{3}+3\right)}{\left(1+3\sqrt{3}\right)^{2}}}
The square of \sqrt{3} is 3.
\frac{-\frac{1}{13}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{1-\frac{3\left(4-2\sqrt{3}\right)}{\left(1+3\sqrt{3}\right)^{2}}}
Add 1 and 3 to get 4.
\frac{-\frac{1}{13}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{1-\frac{3\left(4-2\sqrt{3}\right)}{1+6\sqrt{3}+9\left(\sqrt{3}\right)^{2}}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+3\sqrt{3}\right)^{2}.
\frac{-\frac{1}{13}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{1-\frac{3\left(4-2\sqrt{3}\right)}{1+6\sqrt{3}+9\times 3}}
The square of \sqrt{3} is 3.
\frac{-\frac{1}{13}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{1-\frac{3\left(4-2\sqrt{3}\right)}{1+6\sqrt{3}+27}}
Multiply 9 and 3 to get 27.
\frac{-\frac{1}{13}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{1-\frac{3\left(4-2\sqrt{3}\right)}{28+6\sqrt{3}}}
Add 1 and 27 to get 28.
\frac{-\frac{1}{13}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{1-\frac{3\left(4-2\sqrt{3}\right)\left(28-6\sqrt{3}\right)}{\left(28+6\sqrt{3}\right)\left(28-6\sqrt{3}\right)}}
Rationalize the denominator of \frac{3\left(4-2\sqrt{3}\right)}{28+6\sqrt{3}} by multiplying numerator and denominator by 28-6\sqrt{3}.
\frac{-\frac{1}{13}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{1-\frac{3\left(4-2\sqrt{3}\right)\left(28-6\sqrt{3}\right)}{28^{2}-\left(6\sqrt{3}\right)^{2}}}
Consider \left(28+6\sqrt{3}\right)\left(28-6\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-\frac{1}{13}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{1-\frac{3\left(4-2\sqrt{3}\right)\left(28-6\sqrt{3}\right)}{784-\left(6\sqrt{3}\right)^{2}}}
Calculate 28 to the power of 2 and get 784.
\frac{-\frac{1}{13}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{1-\frac{3\left(4-2\sqrt{3}\right)\left(28-6\sqrt{3}\right)}{784-6^{2}\left(\sqrt{3}\right)^{2}}}
Expand \left(6\sqrt{3}\right)^{2}.
\frac{-\frac{1}{13}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{1-\frac{3\left(4-2\sqrt{3}\right)\left(28-6\sqrt{3}\right)}{784-36\left(\sqrt{3}\right)^{2}}}
Calculate 6 to the power of 2 and get 36.
\frac{-\frac{1}{13}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{1-\frac{3\left(4-2\sqrt{3}\right)\left(28-6\sqrt{3}\right)}{784-36\times 3}}
The square of \sqrt{3} is 3.
\frac{-\frac{1}{13}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{1-\frac{3\left(4-2\sqrt{3}\right)\left(28-6\sqrt{3}\right)}{784-108}}
Multiply 36 and 3 to get 108.
\frac{-\frac{1}{13}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{1-\frac{3\left(4-2\sqrt{3}\right)\left(28-6\sqrt{3}\right)}{676}}
Subtract 108 from 784 to get 676.
\frac{-\frac{1}{13}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{\frac{676}{676}-\frac{3\left(4-2\sqrt{3}\right)\left(28-6\sqrt{3}\right)}{676}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{676}{676}.
\frac{-\frac{1}{13}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{\frac{676-3\left(4-2\sqrt{3}\right)\left(28-6\sqrt{3}\right)}{676}}
Since \frac{676}{676} and \frac{3\left(4-2\sqrt{3}\right)\left(28-6\sqrt{3}\right)}{676} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{1}{13}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{\frac{676-336+72\sqrt{3}+168\sqrt{3}-108}{676}}
Do the multiplications in 676-3\left(4-2\sqrt{3}\right)\left(28-6\sqrt{3}\right).
\frac{-\frac{1}{13}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{\frac{232+240\sqrt{3}}{676}}
Do the calculations in 676-336+72\sqrt{3}+168\sqrt{3}-108.
\frac{-\frac{1}{13}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)\times 676}{232+240\sqrt{3}}
Divide -\frac{1}{13}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right) by \frac{232+240\sqrt{3}}{676} by multiplying -\frac{1}{13}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right) by the reciprocal of \frac{232+240\sqrt{3}}{676}.
\frac{-52\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{232+240\sqrt{3}}
Multiply -\frac{1}{13} and 676 to get -52.
\frac{-52\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)\left(232-240\sqrt{3}\right)}{\left(232+240\sqrt{3}\right)\left(232-240\sqrt{3}\right)}
Rationalize the denominator of \frac{-52\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)}{232+240\sqrt{3}} by multiplying numerator and denominator by 232-240\sqrt{3}.
\frac{-52\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)\left(232-240\sqrt{3}\right)}{232^{2}-\left(240\sqrt{3}\right)^{2}}
Consider \left(232+240\sqrt{3}\right)\left(232-240\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-52\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)\left(232-240\sqrt{3}\right)}{53824-\left(240\sqrt{3}\right)^{2}}
Calculate 232 to the power of 2 and get 53824.
\frac{-52\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)\left(232-240\sqrt{3}\right)}{53824-240^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(240\sqrt{3}\right)^{2}.
\frac{-52\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)\left(232-240\sqrt{3}\right)}{53824-57600\left(\sqrt{3}\right)^{2}}
Calculate 240 to the power of 2 and get 57600.
\frac{-52\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)\left(232-240\sqrt{3}\right)}{53824-57600\times 3}
The square of \sqrt{3} is 3.
\frac{-52\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)\left(232-240\sqrt{3}\right)}{53824-172800}
Multiply 57600 and 3 to get 172800.
\frac{-52\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)\left(232-240\sqrt{3}\right)}{-118976}
Subtract 172800 from 53824 to get -118976.
\frac{1}{2288}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)\left(232-240\sqrt{3}\right)
Divide -52\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)\left(232-240\sqrt{3}\right) by -118976 to get \frac{1}{2288}\sqrt{3}\left(1-\sqrt{3}\right)\left(1-3\sqrt{3}\right)\left(232-240\sqrt{3}\right).
\left(\frac{1}{2288}\sqrt{3}-\frac{1}{2288}\left(\sqrt{3}\right)^{2}\right)\left(1-3\sqrt{3}\right)\left(232-240\sqrt{3}\right)
Use the distributive property to multiply \frac{1}{2288}\sqrt{3} by 1-\sqrt{3}.
\left(\frac{1}{2288}\sqrt{3}-\frac{1}{2288}\times 3\right)\left(1-3\sqrt{3}\right)\left(232-240\sqrt{3}\right)
The square of \sqrt{3} is 3.
\left(\frac{1}{2288}\sqrt{3}-\frac{3}{2288}\right)\left(1-3\sqrt{3}\right)\left(232-240\sqrt{3}\right)
Multiply -\frac{1}{2288} and 3 to get -\frac{3}{2288}.
\left(\frac{5}{1144}\sqrt{3}-\frac{3}{2288}\left(\sqrt{3}\right)^{2}-\frac{3}{2288}\right)\left(232-240\sqrt{3}\right)
Use the distributive property to multiply \frac{1}{2288}\sqrt{3}-\frac{3}{2288} by 1-3\sqrt{3} and combine like terms.
\left(\frac{5}{1144}\sqrt{3}-\frac{3}{2288}\times 3-\frac{3}{2288}\right)\left(232-240\sqrt{3}\right)
The square of \sqrt{3} is 3.
\left(\frac{5}{1144}\sqrt{3}-\frac{9}{2288}-\frac{3}{2288}\right)\left(232-240\sqrt{3}\right)
Multiply -\frac{3}{2288} and 3 to get -\frac{9}{2288}.
\left(\frac{5}{1144}\sqrt{3}-\frac{3}{572}\right)\left(232-240\sqrt{3}\right)
Subtract \frac{3}{2288} from -\frac{9}{2288} to get -\frac{3}{572}.
\frac{25}{11}\sqrt{3}-\frac{150}{143}\left(\sqrt{3}\right)^{2}-\frac{174}{143}
Use the distributive property to multiply \frac{5}{1144}\sqrt{3}-\frac{3}{572} by 232-240\sqrt{3} and combine like terms.
\frac{25}{11}\sqrt{3}-\frac{150}{143}\times 3-\frac{174}{143}
The square of \sqrt{3} is 3.
\frac{25}{11}\sqrt{3}-\frac{450}{143}-\frac{174}{143}
Multiply -\frac{150}{143} and 3 to get -\frac{450}{143}.
\frac{25}{11}\sqrt{3}-\frac{48}{11}
Subtract \frac{174}{143} from -\frac{450}{143} to get -\frac{48}{11}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}