Verify
false
Share
Copied to clipboard
\frac{\frac{2\times 83+79}{83}\times \frac{7\times 137+131}{137}}{\frac{3\times 97+89}{97}\times \frac{5\times 13+11}{13}}\times 1+1=\frac{\frac{1\times 76+38}{76}}{\frac{3\times 21+19}{21}}
Divide \frac{\frac{2\times 83+79}{83}}{\frac{3\times 97+89}{97}} by \frac{\frac{5\times 13+11}{13}}{\frac{7\times 137+131}{137}} by multiplying \frac{\frac{2\times 83+79}{83}}{\frac{3\times 97+89}{97}} by the reciprocal of \frac{\frac{5\times 13+11}{13}}{\frac{7\times 137+131}{137}}.
\frac{\frac{166+79}{83}\times \frac{7\times 137+131}{137}}{\frac{3\times 97+89}{97}\times \frac{5\times 13+11}{13}}\times 1+1=\frac{\frac{1\times 76+38}{76}}{\frac{3\times 21+19}{21}}
Multiply 2 and 83 to get 166.
\frac{\frac{245}{83}\times \frac{7\times 137+131}{137}}{\frac{3\times 97+89}{97}\times \frac{5\times 13+11}{13}}\times 1+1=\frac{\frac{1\times 76+38}{76}}{\frac{3\times 21+19}{21}}
Add 166 and 79 to get 245.
\frac{\frac{245}{83}\times \frac{959+131}{137}}{\frac{3\times 97+89}{97}\times \frac{5\times 13+11}{13}}\times 1+1=\frac{\frac{1\times 76+38}{76}}{\frac{3\times 21+19}{21}}
Multiply 7 and 137 to get 959.
\frac{\frac{245}{83}\times \frac{1090}{137}}{\frac{3\times 97+89}{97}\times \frac{5\times 13+11}{13}}\times 1+1=\frac{\frac{1\times 76+38}{76}}{\frac{3\times 21+19}{21}}
Add 959 and 131 to get 1090.
\frac{\frac{245\times 1090}{83\times 137}}{\frac{3\times 97+89}{97}\times \frac{5\times 13+11}{13}}\times 1+1=\frac{\frac{1\times 76+38}{76}}{\frac{3\times 21+19}{21}}
Multiply \frac{245}{83} times \frac{1090}{137} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{267050}{11371}}{\frac{3\times 97+89}{97}\times \frac{5\times 13+11}{13}}\times 1+1=\frac{\frac{1\times 76+38}{76}}{\frac{3\times 21+19}{21}}
Do the multiplications in the fraction \frac{245\times 1090}{83\times 137}.
\frac{\frac{267050}{11371}}{\frac{291+89}{97}\times \frac{5\times 13+11}{13}}\times 1+1=\frac{\frac{1\times 76+38}{76}}{\frac{3\times 21+19}{21}}
Multiply 3 and 97 to get 291.
\frac{\frac{267050}{11371}}{\frac{380}{97}\times \frac{5\times 13+11}{13}}\times 1+1=\frac{\frac{1\times 76+38}{76}}{\frac{3\times 21+19}{21}}
Add 291 and 89 to get 380.
\frac{\frac{267050}{11371}}{\frac{380}{97}\times \frac{65+11}{13}}\times 1+1=\frac{\frac{1\times 76+38}{76}}{\frac{3\times 21+19}{21}}
Multiply 5 and 13 to get 65.
\frac{\frac{267050}{11371}}{\frac{380}{97}\times \frac{76}{13}}\times 1+1=\frac{\frac{1\times 76+38}{76}}{\frac{3\times 21+19}{21}}
Add 65 and 11 to get 76.
\frac{\frac{267050}{11371}}{\frac{380\times 76}{97\times 13}}\times 1+1=\frac{\frac{1\times 76+38}{76}}{\frac{3\times 21+19}{21}}
Multiply \frac{380}{97} times \frac{76}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{267050}{11371}}{\frac{28880}{1261}}\times 1+1=\frac{\frac{1\times 76+38}{76}}{\frac{3\times 21+19}{21}}
Do the multiplications in the fraction \frac{380\times 76}{97\times 13}.
\frac{267050}{11371}\times \frac{1261}{28880}\times 1+1=\frac{\frac{1\times 76+38}{76}}{\frac{3\times 21+19}{21}}
Divide \frac{267050}{11371} by \frac{28880}{1261} by multiplying \frac{267050}{11371} by the reciprocal of \frac{28880}{1261}.
\frac{267050\times 1261}{11371\times 28880}\times 1+1=\frac{\frac{1\times 76+38}{76}}{\frac{3\times 21+19}{21}}
Multiply \frac{267050}{11371} times \frac{1261}{28880} by multiplying numerator times numerator and denominator times denominator.
\frac{336750050}{328394480}\times 1+1=\frac{\frac{1\times 76+38}{76}}{\frac{3\times 21+19}{21}}
Do the multiplications in the fraction \frac{267050\times 1261}{11371\times 28880}.
\frac{33675005}{32839448}\times 1+1=\frac{\frac{1\times 76+38}{76}}{\frac{3\times 21+19}{21}}
Reduce the fraction \frac{336750050}{328394480} to lowest terms by extracting and canceling out 10.
\frac{33675005}{32839448}+1=\frac{\frac{1\times 76+38}{76}}{\frac{3\times 21+19}{21}}
Multiply \frac{33675005}{32839448} and 1 to get \frac{33675005}{32839448}.
\frac{33675005}{32839448}+\frac{32839448}{32839448}=\frac{\frac{1\times 76+38}{76}}{\frac{3\times 21+19}{21}}
Convert 1 to fraction \frac{32839448}{32839448}.
\frac{33675005+32839448}{32839448}=\frac{\frac{1\times 76+38}{76}}{\frac{3\times 21+19}{21}}
Since \frac{33675005}{32839448} and \frac{32839448}{32839448} have the same denominator, add them by adding their numerators.
\frac{66514453}{32839448}=\frac{\frac{1\times 76+38}{76}}{\frac{3\times 21+19}{21}}
Add 33675005 and 32839448 to get 66514453.
\frac{66514453}{32839448}=\frac{\left(1\times 76+38\right)\times 21}{76\left(3\times 21+19\right)}
Divide \frac{1\times 76+38}{76} by \frac{3\times 21+19}{21} by multiplying \frac{1\times 76+38}{76} by the reciprocal of \frac{3\times 21+19}{21}.
\frac{66514453}{32839448}=\frac{\left(76+38\right)\times 21}{76\left(3\times 21+19\right)}
Multiply 1 and 76 to get 76.
\frac{66514453}{32839448}=\frac{114\times 21}{76\left(3\times 21+19\right)}
Add 76 and 38 to get 114.
\frac{66514453}{32839448}=\frac{2394}{76\left(3\times 21+19\right)}
Multiply 114 and 21 to get 2394.
\frac{66514453}{32839448}=\frac{2394}{76\left(63+19\right)}
Multiply 3 and 21 to get 63.
\frac{66514453}{32839448}=\frac{2394}{76\times 82}
Add 63 and 19 to get 82.
\frac{66514453}{32839448}=\frac{2394}{6232}
Multiply 76 and 82 to get 6232.
\frac{66514453}{32839448}=\frac{63}{164}
Reduce the fraction \frac{2394}{6232} to lowest terms by extracting and canceling out 38.
\frac{2727092573}{1346417368}=\frac{517221306}{1346417368}
Least common multiple of 32839448 and 164 is 1346417368. Convert \frac{66514453}{32839448} and \frac{63}{164} to fractions with denominator 1346417368.
\text{false}
Compare \frac{2727092573}{1346417368} and \frac{517221306}{1346417368}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}