Evaluate
\frac{21}{124}\approx 0.169354839
Factor
\frac{3 \cdot 7}{2 ^ {2} \cdot 31} = 0.1693548387096774
Share
Copied to clipboard
\frac{\frac{2+\frac{1}{3}}{7}+\frac{1-\frac{1}{4}}{3}}{\frac{1}{\frac{1}{4}}-\frac{\frac{1}{3}}{\frac{3}{5}}}
Divide 2 by 2 to get 1.
\frac{\frac{\frac{6}{3}+\frac{1}{3}}{7}+\frac{1-\frac{1}{4}}{3}}{\frac{1}{\frac{1}{4}}-\frac{\frac{1}{3}}{\frac{3}{5}}}
Convert 2 to fraction \frac{6}{3}.
\frac{\frac{\frac{6+1}{3}}{7}+\frac{1-\frac{1}{4}}{3}}{\frac{1}{\frac{1}{4}}-\frac{\frac{1}{3}}{\frac{3}{5}}}
Since \frac{6}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{\frac{7}{3}}{7}+\frac{1-\frac{1}{4}}{3}}{\frac{1}{\frac{1}{4}}-\frac{\frac{1}{3}}{\frac{3}{5}}}
Add 6 and 1 to get 7.
\frac{\frac{7}{3\times 7}+\frac{1-\frac{1}{4}}{3}}{\frac{1}{\frac{1}{4}}-\frac{\frac{1}{3}}{\frac{3}{5}}}
Express \frac{\frac{7}{3}}{7} as a single fraction.
\frac{\frac{1}{3}+\frac{1-\frac{1}{4}}{3}}{\frac{1}{\frac{1}{4}}-\frac{\frac{1}{3}}{\frac{3}{5}}}
Cancel out 7 in both numerator and denominator.
\frac{\frac{1}{3}+\frac{\frac{4}{4}-\frac{1}{4}}{3}}{\frac{1}{\frac{1}{4}}-\frac{\frac{1}{3}}{\frac{3}{5}}}
Convert 1 to fraction \frac{4}{4}.
\frac{\frac{1}{3}+\frac{\frac{4-1}{4}}{3}}{\frac{1}{\frac{1}{4}}-\frac{\frac{1}{3}}{\frac{3}{5}}}
Since \frac{4}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{3}+\frac{\frac{3}{4}}{3}}{\frac{1}{\frac{1}{4}}-\frac{\frac{1}{3}}{\frac{3}{5}}}
Subtract 1 from 4 to get 3.
\frac{\frac{1}{3}+\frac{3}{4\times 3}}{\frac{1}{\frac{1}{4}}-\frac{\frac{1}{3}}{\frac{3}{5}}}
Express \frac{\frac{3}{4}}{3} as a single fraction.
\frac{\frac{1}{3}+\frac{1}{4}}{\frac{1}{\frac{1}{4}}-\frac{\frac{1}{3}}{\frac{3}{5}}}
Cancel out 3 in both numerator and denominator.
\frac{\frac{4}{12}+\frac{3}{12}}{\frac{1}{\frac{1}{4}}-\frac{\frac{1}{3}}{\frac{3}{5}}}
Least common multiple of 3 and 4 is 12. Convert \frac{1}{3} and \frac{1}{4} to fractions with denominator 12.
\frac{\frac{4+3}{12}}{\frac{1}{\frac{1}{4}}-\frac{\frac{1}{3}}{\frac{3}{5}}}
Since \frac{4}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{\frac{7}{12}}{\frac{1}{\frac{1}{4}}-\frac{\frac{1}{3}}{\frac{3}{5}}}
Add 4 and 3 to get 7.
\frac{\frac{7}{12}}{1\times 4-\frac{\frac{1}{3}}{\frac{3}{5}}}
Divide 1 by \frac{1}{4} by multiplying 1 by the reciprocal of \frac{1}{4}.
\frac{\frac{7}{12}}{4-\frac{\frac{1}{3}}{\frac{3}{5}}}
Multiply 1 and 4 to get 4.
\frac{\frac{7}{12}}{4-\frac{1}{3}\times \frac{5}{3}}
Divide \frac{1}{3} by \frac{3}{5} by multiplying \frac{1}{3} by the reciprocal of \frac{3}{5}.
\frac{\frac{7}{12}}{4-\frac{1\times 5}{3\times 3}}
Multiply \frac{1}{3} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{7}{12}}{4-\frac{5}{9}}
Do the multiplications in the fraction \frac{1\times 5}{3\times 3}.
\frac{\frac{7}{12}}{\frac{36}{9}-\frac{5}{9}}
Convert 4 to fraction \frac{36}{9}.
\frac{\frac{7}{12}}{\frac{36-5}{9}}
Since \frac{36}{9} and \frac{5}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{7}{12}}{\frac{31}{9}}
Subtract 5 from 36 to get 31.
\frac{7}{12}\times \frac{9}{31}
Divide \frac{7}{12} by \frac{31}{9} by multiplying \frac{7}{12} by the reciprocal of \frac{31}{9}.
\frac{7\times 9}{12\times 31}
Multiply \frac{7}{12} times \frac{9}{31} by multiplying numerator times numerator and denominator times denominator.
\frac{63}{372}
Do the multiplications in the fraction \frac{7\times 9}{12\times 31}.
\frac{21}{124}
Reduce the fraction \frac{63}{372} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}