Evaluate
\frac{22}{95}\approx 0.231578947
Factor
\frac{2 \cdot 11}{5 \cdot 19} = 0.23157894736842105
Share
Copied to clipboard
\frac{\frac{\frac{6}{3}+\frac{1}{3}}{7}+\frac{1-\frac{1}{4}}{3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Convert 2 to fraction \frac{6}{3}.
\frac{\frac{\frac{6+1}{3}}{7}+\frac{1-\frac{1}{4}}{3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Since \frac{6}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{\frac{7}{3}}{7}+\frac{1-\frac{1}{4}}{3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Add 6 and 1 to get 7.
\frac{\frac{7}{3\times 7}+\frac{1-\frac{1}{4}}{3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Express \frac{\frac{7}{3}}{7} as a single fraction.
\frac{\frac{1}{3}+\frac{1-\frac{1}{4}}{3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Cancel out 7 in both numerator and denominator.
\frac{\frac{1}{3}+\frac{\frac{4}{4}-\frac{1}{4}}{3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Convert 1 to fraction \frac{4}{4}.
\frac{\frac{1}{3}+\frac{\frac{4-1}{4}}{3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Since \frac{4}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{3}+\frac{\frac{3}{4}}{3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Subtract 1 from 4 to get 3.
\frac{\frac{1}{3}+\frac{3}{4\times 3}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Express \frac{\frac{3}{4}}{3} as a single fraction.
\frac{\frac{1}{3}+\frac{1}{4}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Cancel out 3 in both numerator and denominator.
\frac{\frac{4}{12}+\frac{3}{12}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Least common multiple of 3 and 4 is 12. Convert \frac{1}{3} and \frac{1}{4} to fractions with denominator 12.
\frac{\frac{4+3}{12}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Since \frac{4}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{\frac{7}{12}}{\frac{\frac{1}{2}}{\frac{1}{4}}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Add 4 and 3 to get 7.
\frac{\frac{7}{12}}{\frac{1}{2}\times 4-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Divide \frac{1}{2} by \frac{1}{4} by multiplying \frac{1}{2} by the reciprocal of \frac{1}{4}.
\frac{\frac{7}{12}}{\frac{4}{2}-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
\frac{\frac{7}{12}}{2-\frac{1}{\frac{4}{3}}}\left(\frac{2}{7}+\frac{4}{19}\right)
Divide 4 by 2 to get 2.
\frac{\frac{7}{12}}{2-1\times \frac{3}{4}}\left(\frac{2}{7}+\frac{4}{19}\right)
Divide 1 by \frac{4}{3} by multiplying 1 by the reciprocal of \frac{4}{3}.
\frac{\frac{7}{12}}{2-\frac{3}{4}}\left(\frac{2}{7}+\frac{4}{19}\right)
Multiply 1 and \frac{3}{4} to get \frac{3}{4}.
\frac{\frac{7}{12}}{\frac{8}{4}-\frac{3}{4}}\left(\frac{2}{7}+\frac{4}{19}\right)
Convert 2 to fraction \frac{8}{4}.
\frac{\frac{7}{12}}{\frac{8-3}{4}}\left(\frac{2}{7}+\frac{4}{19}\right)
Since \frac{8}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{7}{12}}{\frac{5}{4}}\left(\frac{2}{7}+\frac{4}{19}\right)
Subtract 3 from 8 to get 5.
\frac{7}{12}\times \frac{4}{5}\left(\frac{2}{7}+\frac{4}{19}\right)
Divide \frac{7}{12} by \frac{5}{4} by multiplying \frac{7}{12} by the reciprocal of \frac{5}{4}.
\frac{7\times 4}{12\times 5}\left(\frac{2}{7}+\frac{4}{19}\right)
Multiply \frac{7}{12} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{28}{60}\left(\frac{2}{7}+\frac{4}{19}\right)
Do the multiplications in the fraction \frac{7\times 4}{12\times 5}.
\frac{7}{15}\left(\frac{2}{7}+\frac{4}{19}\right)
Reduce the fraction \frac{28}{60} to lowest terms by extracting and canceling out 4.
\frac{7}{15}\left(\frac{38}{133}+\frac{28}{133}\right)
Least common multiple of 7 and 19 is 133. Convert \frac{2}{7} and \frac{4}{19} to fractions with denominator 133.
\frac{7}{15}\times \frac{38+28}{133}
Since \frac{38}{133} and \frac{28}{133} have the same denominator, add them by adding their numerators.
\frac{7}{15}\times \frac{66}{133}
Add 38 and 28 to get 66.
\frac{7\times 66}{15\times 133}
Multiply \frac{7}{15} times \frac{66}{133} by multiplying numerator times numerator and denominator times denominator.
\frac{462}{1995}
Do the multiplications in the fraction \frac{7\times 66}{15\times 133}.
\frac{22}{95}
Reduce the fraction \frac{462}{1995} to lowest terms by extracting and canceling out 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}