Solve for x
x = \frac{5000}{31} = 161\frac{9}{31} \approx 161.290322581
Graph
Share
Copied to clipboard
140\times \frac{160}{250}x=\left(x+200\right)\times 40
Variable x cannot be equal to -200 since division by zero is not defined. Multiply both sides of the equation by 140\left(x+200\right), the least common multiple of 200+x,140.
140\times \frac{16}{25}x=\left(x+200\right)\times 40
Reduce the fraction \frac{160}{250} to lowest terms by extracting and canceling out 10.
\frac{448}{5}x=\left(x+200\right)\times 40
Multiply 140 and \frac{16}{25} to get \frac{448}{5}.
\frac{448}{5}x=40x+8000
Use the distributive property to multiply x+200 by 40.
\frac{448}{5}x-40x=8000
Subtract 40x from both sides.
\frac{248}{5}x=8000
Combine \frac{448}{5}x and -40x to get \frac{248}{5}x.
x=8000\times \frac{5}{248}
Multiply both sides by \frac{5}{248}, the reciprocal of \frac{248}{5}.
x=\frac{5000}{31}
Multiply 8000 and \frac{5}{248} to get \frac{5000}{31}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}