Evaluate
\frac{4\left(3m-13\right)m^{2}}{\left(m-4\right)\left(-m^{3}+4m^{2}+16m-48\right)}
Expand
\frac{4\left(3m^{3}-13m^{2}\right)}{\left(m-4\right)\left(-m^{3}+4m^{2}+16m-48\right)}
Share
Copied to clipboard
\frac{\frac{16\left(m-4\right)}{\left(m-4\right)\left(m-3\right)}-\frac{4\left(m-3\right)}{\left(m-4\right)\left(m-3\right)}}{\frac{16}{m^{2}}-\frac{m-4}{m-3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-3 and m-4 is \left(m-4\right)\left(m-3\right). Multiply \frac{16}{m-3} times \frac{m-4}{m-4}. Multiply \frac{4}{m-4} times \frac{m-3}{m-3}.
\frac{\frac{16\left(m-4\right)-4\left(m-3\right)}{\left(m-4\right)\left(m-3\right)}}{\frac{16}{m^{2}}-\frac{m-4}{m-3}}
Since \frac{16\left(m-4\right)}{\left(m-4\right)\left(m-3\right)} and \frac{4\left(m-3\right)}{\left(m-4\right)\left(m-3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{16m-64-4m+12}{\left(m-4\right)\left(m-3\right)}}{\frac{16}{m^{2}}-\frac{m-4}{m-3}}
Do the multiplications in 16\left(m-4\right)-4\left(m-3\right).
\frac{\frac{12m-52}{\left(m-4\right)\left(m-3\right)}}{\frac{16}{m^{2}}-\frac{m-4}{m-3}}
Combine like terms in 16m-64-4m+12.
\frac{\frac{12m-52}{\left(m-4\right)\left(m-3\right)}}{\frac{16\left(m-3\right)}{\left(m-3\right)m^{2}}-\frac{\left(m-4\right)m^{2}}{\left(m-3\right)m^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m^{2} and m-3 is \left(m-3\right)m^{2}. Multiply \frac{16}{m^{2}} times \frac{m-3}{m-3}. Multiply \frac{m-4}{m-3} times \frac{m^{2}}{m^{2}}.
\frac{\frac{12m-52}{\left(m-4\right)\left(m-3\right)}}{\frac{16\left(m-3\right)-\left(m-4\right)m^{2}}{\left(m-3\right)m^{2}}}
Since \frac{16\left(m-3\right)}{\left(m-3\right)m^{2}} and \frac{\left(m-4\right)m^{2}}{\left(m-3\right)m^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{12m-52}{\left(m-4\right)\left(m-3\right)}}{\frac{16m-48-m^{3}+4m^{2}}{\left(m-3\right)m^{2}}}
Do the multiplications in 16\left(m-3\right)-\left(m-4\right)m^{2}.
\frac{\left(12m-52\right)\left(m-3\right)m^{2}}{\left(m-4\right)\left(m-3\right)\left(16m-48-m^{3}+4m^{2}\right)}
Divide \frac{12m-52}{\left(m-4\right)\left(m-3\right)} by \frac{16m-48-m^{3}+4m^{2}}{\left(m-3\right)m^{2}} by multiplying \frac{12m-52}{\left(m-4\right)\left(m-3\right)} by the reciprocal of \frac{16m-48-m^{3}+4m^{2}}{\left(m-3\right)m^{2}}.
\frac{\left(12m-52\right)m^{2}}{\left(m-4\right)\left(-m^{3}+4m^{2}+16m-48\right)}
Cancel out m-3 in both numerator and denominator.
\frac{12m^{3}-52m^{2}}{\left(m-4\right)\left(-m^{3}+4m^{2}+16m-48\right)}
Use the distributive property to multiply 12m-52 by m^{2}.
\frac{12m^{3}-52m^{2}}{-m^{4}+8m^{3}-112m+192}
Use the distributive property to multiply m-4 by -m^{3}+4m^{2}+16m-48 and combine like terms.
\frac{\frac{16\left(m-4\right)}{\left(m-4\right)\left(m-3\right)}-\frac{4\left(m-3\right)}{\left(m-4\right)\left(m-3\right)}}{\frac{16}{m^{2}}-\frac{m-4}{m-3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-3 and m-4 is \left(m-4\right)\left(m-3\right). Multiply \frac{16}{m-3} times \frac{m-4}{m-4}. Multiply \frac{4}{m-4} times \frac{m-3}{m-3}.
\frac{\frac{16\left(m-4\right)-4\left(m-3\right)}{\left(m-4\right)\left(m-3\right)}}{\frac{16}{m^{2}}-\frac{m-4}{m-3}}
Since \frac{16\left(m-4\right)}{\left(m-4\right)\left(m-3\right)} and \frac{4\left(m-3\right)}{\left(m-4\right)\left(m-3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{16m-64-4m+12}{\left(m-4\right)\left(m-3\right)}}{\frac{16}{m^{2}}-\frac{m-4}{m-3}}
Do the multiplications in 16\left(m-4\right)-4\left(m-3\right).
\frac{\frac{12m-52}{\left(m-4\right)\left(m-3\right)}}{\frac{16}{m^{2}}-\frac{m-4}{m-3}}
Combine like terms in 16m-64-4m+12.
\frac{\frac{12m-52}{\left(m-4\right)\left(m-3\right)}}{\frac{16\left(m-3\right)}{\left(m-3\right)m^{2}}-\frac{\left(m-4\right)m^{2}}{\left(m-3\right)m^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m^{2} and m-3 is \left(m-3\right)m^{2}. Multiply \frac{16}{m^{2}} times \frac{m-3}{m-3}. Multiply \frac{m-4}{m-3} times \frac{m^{2}}{m^{2}}.
\frac{\frac{12m-52}{\left(m-4\right)\left(m-3\right)}}{\frac{16\left(m-3\right)-\left(m-4\right)m^{2}}{\left(m-3\right)m^{2}}}
Since \frac{16\left(m-3\right)}{\left(m-3\right)m^{2}} and \frac{\left(m-4\right)m^{2}}{\left(m-3\right)m^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{12m-52}{\left(m-4\right)\left(m-3\right)}}{\frac{16m-48-m^{3}+4m^{2}}{\left(m-3\right)m^{2}}}
Do the multiplications in 16\left(m-3\right)-\left(m-4\right)m^{2}.
\frac{\left(12m-52\right)\left(m-3\right)m^{2}}{\left(m-4\right)\left(m-3\right)\left(16m-48-m^{3}+4m^{2}\right)}
Divide \frac{12m-52}{\left(m-4\right)\left(m-3\right)} by \frac{16m-48-m^{3}+4m^{2}}{\left(m-3\right)m^{2}} by multiplying \frac{12m-52}{\left(m-4\right)\left(m-3\right)} by the reciprocal of \frac{16m-48-m^{3}+4m^{2}}{\left(m-3\right)m^{2}}.
\frac{\left(12m-52\right)m^{2}}{\left(m-4\right)\left(-m^{3}+4m^{2}+16m-48\right)}
Cancel out m-3 in both numerator and denominator.
\frac{12m^{3}-52m^{2}}{\left(m-4\right)\left(-m^{3}+4m^{2}+16m-48\right)}
Use the distributive property to multiply 12m-52 by m^{2}.
\frac{12m^{3}-52m^{2}}{-m^{4}+8m^{3}-112m+192}
Use the distributive property to multiply m-4 by -m^{3}+4m^{2}+16m-48 and combine like terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}