Evaluate
\frac{564}{91}\approx 6.197802198
Factor
\frac{2 ^ {2} \cdot 3 \cdot 47}{7 \cdot 13} = 6\frac{18}{91} = 6.197802197802198
Share
Copied to clipboard
\frac{16\times 3\left(12+1+34\right)}{\left(12+1\right)\left(16+3\times 4\right)}
Divide \frac{16\times 3}{12+1} by \frac{16+3\times 4}{12+1+34} by multiplying \frac{16\times 3}{12+1} by the reciprocal of \frac{16+3\times 4}{12+1+34}.
\frac{48\left(12+1+34\right)}{\left(12+1\right)\left(16+3\times 4\right)}
Multiply 16 and 3 to get 48.
\frac{48\left(13+34\right)}{\left(12+1\right)\left(16+3\times 4\right)}
Add 12 and 1 to get 13.
\frac{48\times 47}{\left(12+1\right)\left(16+3\times 4\right)}
Add 13 and 34 to get 47.
\frac{2256}{\left(12+1\right)\left(16+3\times 4\right)}
Multiply 48 and 47 to get 2256.
\frac{2256}{13\left(16+3\times 4\right)}
Add 12 and 1 to get 13.
\frac{2256}{13\left(16+12\right)}
Multiply 3 and 4 to get 12.
\frac{2256}{13\times 28}
Add 16 and 12 to get 28.
\frac{2256}{364}
Multiply 13 and 28 to get 364.
\frac{564}{91}
Reduce the fraction \frac{2256}{364} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}