Evaluate
-\frac{31\sqrt{3}\left(\sqrt{181}-26\right)}{198}\approx 3.402322114
Share
Copied to clipboard
\frac{155\sqrt{3}\times 2}{4\left(26+\sqrt{181}\right)}
Divide \frac{155\sqrt{3}}{4} by \frac{26+\sqrt{181}}{2} by multiplying \frac{155\sqrt{3}}{4} by the reciprocal of \frac{26+\sqrt{181}}{2}.
\frac{155\sqrt{3}}{2\left(\sqrt{181}+26\right)}
Cancel out 2 in both numerator and denominator.
\frac{155\sqrt{3}}{2\sqrt{181}+52}
Use the distributive property to multiply 2 by \sqrt{181}+26.
\frac{155\sqrt{3}\left(2\sqrt{181}-52\right)}{\left(2\sqrt{181}+52\right)\left(2\sqrt{181}-52\right)}
Rationalize the denominator of \frac{155\sqrt{3}}{2\sqrt{181}+52} by multiplying numerator and denominator by 2\sqrt{181}-52.
\frac{155\sqrt{3}\left(2\sqrt{181}-52\right)}{\left(2\sqrt{181}\right)^{2}-52^{2}}
Consider \left(2\sqrt{181}+52\right)\left(2\sqrt{181}-52\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{155\sqrt{3}\left(2\sqrt{181}-52\right)}{2^{2}\left(\sqrt{181}\right)^{2}-52^{2}}
Expand \left(2\sqrt{181}\right)^{2}.
\frac{155\sqrt{3}\left(2\sqrt{181}-52\right)}{4\left(\sqrt{181}\right)^{2}-52^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{155\sqrt{3}\left(2\sqrt{181}-52\right)}{4\times 181-52^{2}}
The square of \sqrt{181} is 181.
\frac{155\sqrt{3}\left(2\sqrt{181}-52\right)}{724-52^{2}}
Multiply 4 and 181 to get 724.
\frac{155\sqrt{3}\left(2\sqrt{181}-52\right)}{724-2704}
Calculate 52 to the power of 2 and get 2704.
\frac{155\sqrt{3}\left(2\sqrt{181}-52\right)}{-1980}
Subtract 2704 from 724 to get -1980.
-\frac{31}{396}\sqrt{3}\left(2\sqrt{181}-52\right)
Divide 155\sqrt{3}\left(2\sqrt{181}-52\right) by -1980 to get -\frac{31}{396}\sqrt{3}\left(2\sqrt{181}-52\right).
-\frac{31}{396}\sqrt{3}\times 2\sqrt{181}-\frac{31}{396}\sqrt{3}\left(-52\right)
Use the distributive property to multiply -\frac{31}{396}\sqrt{3} by 2\sqrt{181}-52.
\frac{-31\times 2}{396}\sqrt{3}\sqrt{181}-\frac{31}{396}\sqrt{3}\left(-52\right)
Express -\frac{31}{396}\times 2 as a single fraction.
\frac{-62}{396}\sqrt{3}\sqrt{181}-\frac{31}{396}\sqrt{3}\left(-52\right)
Multiply -31 and 2 to get -62.
-\frac{31}{198}\sqrt{3}\sqrt{181}-\frac{31}{396}\sqrt{3}\left(-52\right)
Reduce the fraction \frac{-62}{396} to lowest terms by extracting and canceling out 2.
-\frac{31}{198}\sqrt{543}-\frac{31}{396}\sqrt{3}\left(-52\right)
To multiply \sqrt{3} and \sqrt{181}, multiply the numbers under the square root.
-\frac{31}{198}\sqrt{543}+\frac{-31\left(-52\right)}{396}\sqrt{3}
Express -\frac{31}{396}\left(-52\right) as a single fraction.
-\frac{31}{198}\sqrt{543}+\frac{1612}{396}\sqrt{3}
Multiply -31 and -52 to get 1612.
-\frac{31}{198}\sqrt{543}+\frac{403}{99}\sqrt{3}
Reduce the fraction \frac{1612}{396} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}