Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{155\sqrt{3}\times 2}{4\left(26+\sqrt{181}\right)}
Divide \frac{155\sqrt{3}}{4} by \frac{26+\sqrt{181}}{2} by multiplying \frac{155\sqrt{3}}{4} by the reciprocal of \frac{26+\sqrt{181}}{2}.
\frac{155\sqrt{3}}{2\left(\sqrt{181}+26\right)}
Cancel out 2 in both numerator and denominator.
\frac{155\sqrt{3}}{2\sqrt{181}+52}
Use the distributive property to multiply 2 by \sqrt{181}+26.
\frac{155\sqrt{3}\left(2\sqrt{181}-52\right)}{\left(2\sqrt{181}+52\right)\left(2\sqrt{181}-52\right)}
Rationalize the denominator of \frac{155\sqrt{3}}{2\sqrt{181}+52} by multiplying numerator and denominator by 2\sqrt{181}-52.
\frac{155\sqrt{3}\left(2\sqrt{181}-52\right)}{\left(2\sqrt{181}\right)^{2}-52^{2}}
Consider \left(2\sqrt{181}+52\right)\left(2\sqrt{181}-52\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{155\sqrt{3}\left(2\sqrt{181}-52\right)}{2^{2}\left(\sqrt{181}\right)^{2}-52^{2}}
Expand \left(2\sqrt{181}\right)^{2}.
\frac{155\sqrt{3}\left(2\sqrt{181}-52\right)}{4\left(\sqrt{181}\right)^{2}-52^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{155\sqrt{3}\left(2\sqrt{181}-52\right)}{4\times 181-52^{2}}
The square of \sqrt{181} is 181.
\frac{155\sqrt{3}\left(2\sqrt{181}-52\right)}{724-52^{2}}
Multiply 4 and 181 to get 724.
\frac{155\sqrt{3}\left(2\sqrt{181}-52\right)}{724-2704}
Calculate 52 to the power of 2 and get 2704.
\frac{155\sqrt{3}\left(2\sqrt{181}-52\right)}{-1980}
Subtract 2704 from 724 to get -1980.
-\frac{31}{396}\sqrt{3}\left(2\sqrt{181}-52\right)
Divide 155\sqrt{3}\left(2\sqrt{181}-52\right) by -1980 to get -\frac{31}{396}\sqrt{3}\left(2\sqrt{181}-52\right).
-\frac{31}{396}\sqrt{3}\times 2\sqrt{181}-\frac{31}{396}\sqrt{3}\left(-52\right)
Use the distributive property to multiply -\frac{31}{396}\sqrt{3} by 2\sqrt{181}-52.
\frac{-31\times 2}{396}\sqrt{3}\sqrt{181}-\frac{31}{396}\sqrt{3}\left(-52\right)
Express -\frac{31}{396}\times 2 as a single fraction.
\frac{-62}{396}\sqrt{3}\sqrt{181}-\frac{31}{396}\sqrt{3}\left(-52\right)
Multiply -31 and 2 to get -62.
-\frac{31}{198}\sqrt{3}\sqrt{181}-\frac{31}{396}\sqrt{3}\left(-52\right)
Reduce the fraction \frac{-62}{396} to lowest terms by extracting and canceling out 2.
-\frac{31}{198}\sqrt{543}-\frac{31}{396}\sqrt{3}\left(-52\right)
To multiply \sqrt{3} and \sqrt{181}, multiply the numbers under the square root.
-\frac{31}{198}\sqrt{543}+\frac{-31\left(-52\right)}{396}\sqrt{3}
Express -\frac{31}{396}\left(-52\right) as a single fraction.
-\frac{31}{198}\sqrt{543}+\frac{1612}{396}\sqrt{3}
Multiply -31 and -52 to get 1612.
-\frac{31}{198}\sqrt{543}+\frac{403}{99}\sqrt{3}
Reduce the fraction \frac{1612}{396} to lowest terms by extracting and canceling out 4.