Evaluate
\frac{3}{16}=0.1875
Factor
\frac{3}{2 ^ {4}} = 0.1875
Share
Copied to clipboard
\frac{\frac{26}{80}+\frac{5}{80}}{\frac{13}{5}-\frac{8}{15}}
Least common multiple of 40 and 16 is 80. Convert \frac{13}{40} and \frac{1}{16} to fractions with denominator 80.
\frac{\frac{26+5}{80}}{\frac{13}{5}-\frac{8}{15}}
Since \frac{26}{80} and \frac{5}{80} have the same denominator, add them by adding their numerators.
\frac{\frac{31}{80}}{\frac{13}{5}-\frac{8}{15}}
Add 26 and 5 to get 31.
\frac{\frac{31}{80}}{\frac{39}{15}-\frac{8}{15}}
Least common multiple of 5 and 15 is 15. Convert \frac{13}{5} and \frac{8}{15} to fractions with denominator 15.
\frac{\frac{31}{80}}{\frac{39-8}{15}}
Since \frac{39}{15} and \frac{8}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{31}{80}}{\frac{31}{15}}
Subtract 8 from 39 to get 31.
\frac{31}{80}\times \frac{15}{31}
Divide \frac{31}{80} by \frac{31}{15} by multiplying \frac{31}{80} by the reciprocal of \frac{31}{15}.
\frac{31\times 15}{80\times 31}
Multiply \frac{31}{80} times \frac{15}{31} by multiplying numerator times numerator and denominator times denominator.
\frac{15}{80}
Cancel out 31 in both numerator and denominator.
\frac{3}{16}
Reduce the fraction \frac{15}{80} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}