Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{10x^{2}\left(x+1\right)}{\left(x^{2}-1\right)\times 5x}
Divide \frac{10x^{2}}{x^{2}-1} by \frac{5x}{x+1} by multiplying \frac{10x^{2}}{x^{2}-1} by the reciprocal of \frac{5x}{x+1}.
\frac{2x\left(x+1\right)}{x^{2}-1}
Cancel out 5x in both numerator and denominator.
\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored.
\frac{2x}{x-1}
Cancel out x+1 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10x^{2}\left(x+1\right)}{\left(x^{2}-1\right)\times 5x})
Divide \frac{10x^{2}}{x^{2}-1} by \frac{5x}{x+1} by multiplying \frac{10x^{2}}{x^{2}-1} by the reciprocal of \frac{5x}{x+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x\left(x+1\right)}{x^{2}-1})
Cancel out 5x in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)})
Factor the expressions that are not already factored in \frac{2x\left(x+1\right)}{x^{2}-1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{x-1})
Cancel out x+1 in both numerator and denominator.
\frac{\left(x^{1}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1})-2x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-1)}{\left(x^{1}-1\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(x^{1}-1\right)\times 2x^{1-1}-2x^{1}x^{1-1}}{\left(x^{1}-1\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(x^{1}-1\right)\times 2x^{0}-2x^{1}x^{0}}{\left(x^{1}-1\right)^{2}}
Do the arithmetic.
\frac{x^{1}\times 2x^{0}-2x^{0}-2x^{1}x^{0}}{\left(x^{1}-1\right)^{2}}
Expand using distributive property.
\frac{2x^{1}-2x^{0}-2x^{1}}{\left(x^{1}-1\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{\left(2-2\right)x^{1}-2x^{0}}{\left(x^{1}-1\right)^{2}}
Combine like terms.
\frac{-2x^{0}}{\left(x^{1}-1\right)^{2}}
Subtract 2 from 2.
\frac{-2x^{0}}{\left(x-1\right)^{2}}
For any term t, t^{1}=t.
\frac{-2}{\left(x-1\right)^{2}}
For any term t except 0, t^{0}=1.