Evaluate
-\frac{2}{h+5}
Expand
-\frac{2}{h+5}
Quiz
Polynomial
5 problems similar to:
\frac { \frac { 10 } { 5 + h } - \frac { 10 } { 5 } } { 5 + h - 5 }
Share
Copied to clipboard
\frac{\frac{10}{5+h}-2}{5+h-5}
Divide 10 by 5 to get 2.
\frac{\frac{10}{5+h}-\frac{2\left(5+h\right)}{5+h}}{5+h-5}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{5+h}{5+h}.
\frac{\frac{10-2\left(5+h\right)}{5+h}}{5+h-5}
Since \frac{10}{5+h} and \frac{2\left(5+h\right)}{5+h} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{10-10-2h}{5+h}}{5+h-5}
Do the multiplications in 10-2\left(5+h\right).
\frac{\frac{-2h}{5+h}}{5+h-5}
Combine like terms in 10-10-2h.
\frac{\frac{-2h}{5+h}}{h}
Subtract 5 from 5 to get 0.
\frac{-2h}{\left(5+h\right)h}
Express \frac{\frac{-2h}{5+h}}{h} as a single fraction.
\frac{-2}{h+5}
Cancel out h in both numerator and denominator.
\frac{\frac{10}{5+h}-2}{5+h-5}
Divide 10 by 5 to get 2.
\frac{\frac{10}{5+h}-\frac{2\left(5+h\right)}{5+h}}{5+h-5}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{5+h}{5+h}.
\frac{\frac{10-2\left(5+h\right)}{5+h}}{5+h-5}
Since \frac{10}{5+h} and \frac{2\left(5+h\right)}{5+h} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{10-10-2h}{5+h}}{5+h-5}
Do the multiplications in 10-2\left(5+h\right).
\frac{\frac{-2h}{5+h}}{5+h-5}
Combine like terms in 10-10-2h.
\frac{\frac{-2h}{5+h}}{h}
Subtract 5 from 5 to get 0.
\frac{-2h}{\left(5+h\right)h}
Express \frac{\frac{-2h}{5+h}}{h} as a single fraction.
\frac{-2}{h+5}
Cancel out h in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}