Skip to main content
Solve for x
Tick mark Image
Graph

Share

\frac{10x}{3}-\frac{1}{6}\leq 0 -\frac{x}{3}+\frac{1}{2}<0
For the quotient to be ≥0, \frac{10x}{3}-\frac{1}{6} and -\frac{x}{3}+\frac{1}{2} have to be both ≤0 or both ≥0, and -\frac{x}{3}+\frac{1}{2} cannot be zero. Consider the case when \frac{10x}{3}-\frac{1}{6}\leq 0 and -\frac{x}{3}+\frac{1}{2} is negative.
x\in \emptyset
This is false for any x.
\frac{10x}{3}-\frac{1}{6}\geq 0 -\frac{x}{3}+\frac{1}{2}>0
Consider the case when \frac{10x}{3}-\frac{1}{6}\geq 0 and -\frac{x}{3}+\frac{1}{2} is positive.
x\in [\frac{1}{20},\frac{3}{2})
The solution satisfying both inequalities is x\in \left[\frac{1}{20},\frac{3}{2}\right).
x\in [\frac{1}{20},\frac{3}{2})
The final solution is the union of the obtained solutions.