Evaluate
-\frac{3}{\left(x+2\right)\left(x+h+2\right)}
Expand
-\frac{3}{\left(x+2\right)\left(x+h+2\right)}
Graph
Share
Copied to clipboard
\frac{\frac{\left(1-\left(x+h\right)\right)\left(x+2\right)}{\left(x+2\right)\left(x+h+2\right)}-\frac{\left(1-x\right)\left(x+h+2\right)}{\left(x+2\right)\left(x+h+2\right)}}{h}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2+x+h and 2+x is \left(x+2\right)\left(x+h+2\right). Multiply \frac{1-\left(x+h\right)}{2+x+h} times \frac{x+2}{x+2}. Multiply \frac{1-x}{2+x} times \frac{x+h+2}{x+h+2}.
\frac{\frac{\left(1-\left(x+h\right)\right)\left(x+2\right)-\left(1-x\right)\left(x+h+2\right)}{\left(x+2\right)\left(x+h+2\right)}}{h}
Since \frac{\left(1-\left(x+h\right)\right)\left(x+2\right)}{\left(x+2\right)\left(x+h+2\right)} and \frac{\left(1-x\right)\left(x+h+2\right)}{\left(x+2\right)\left(x+h+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2+x-x^{2}-2x-hx-2h-x-h-2+x^{2}+xh+2x}{\left(x+2\right)\left(x+h+2\right)}}{h}
Do the multiplications in \left(1-\left(x+h\right)\right)\left(x+2\right)-\left(1-x\right)\left(x+h+2\right).
\frac{\frac{-3h}{\left(x+2\right)\left(x+h+2\right)}}{h}
Combine like terms in 2+x-x^{2}-2x-hx-2h-x-h-2+x^{2}+xh+2x.
\frac{-3h}{\left(x+2\right)\left(x+h+2\right)h}
Express \frac{\frac{-3h}{\left(x+2\right)\left(x+h+2\right)}}{h} as a single fraction.
\frac{-3}{\left(x+2\right)\left(x+h+2\right)}
Cancel out h in both numerator and denominator.
\frac{-3}{x^{2}+xh+2x+2x+2h+4}
Apply the distributive property by multiplying each term of x+2 by each term of x+h+2.
\frac{-3}{x^{2}+xh+4x+2h+4}
Combine 2x and 2x to get 4x.
\frac{\frac{\left(1-\left(x+h\right)\right)\left(x+2\right)}{\left(x+2\right)\left(x+h+2\right)}-\frac{\left(1-x\right)\left(x+h+2\right)}{\left(x+2\right)\left(x+h+2\right)}}{h}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2+x+h and 2+x is \left(x+2\right)\left(x+h+2\right). Multiply \frac{1-\left(x+h\right)}{2+x+h} times \frac{x+2}{x+2}. Multiply \frac{1-x}{2+x} times \frac{x+h+2}{x+h+2}.
\frac{\frac{\left(1-\left(x+h\right)\right)\left(x+2\right)-\left(1-x\right)\left(x+h+2\right)}{\left(x+2\right)\left(x+h+2\right)}}{h}
Since \frac{\left(1-\left(x+h\right)\right)\left(x+2\right)}{\left(x+2\right)\left(x+h+2\right)} and \frac{\left(1-x\right)\left(x+h+2\right)}{\left(x+2\right)\left(x+h+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2+x-x^{2}-2x-hx-2h-x-h-2+x^{2}+xh+2x}{\left(x+2\right)\left(x+h+2\right)}}{h}
Do the multiplications in \left(1-\left(x+h\right)\right)\left(x+2\right)-\left(1-x\right)\left(x+h+2\right).
\frac{\frac{-3h}{\left(x+2\right)\left(x+h+2\right)}}{h}
Combine like terms in 2+x-x^{2}-2x-hx-2h-x-h-2+x^{2}+xh+2x.
\frac{-3h}{\left(x+2\right)\left(x+h+2\right)h}
Express \frac{\frac{-3h}{\left(x+2\right)\left(x+h+2\right)}}{h} as a single fraction.
\frac{-3}{\left(x+2\right)\left(x+h+2\right)}
Cancel out h in both numerator and denominator.
\frac{-3}{x^{2}+xh+2x+2x+2h+4}
Apply the distributive property by multiplying each term of x+2 by each term of x+h+2.
\frac{-3}{x^{2}+xh+4x+2h+4}
Combine 2x and 2x to get 4x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}