Evaluate
-\frac{1}{8}=-0.125
Factor
-\frac{1}{8} = -0.125
Graph
Share
Copied to clipboard
\frac{\left(\frac{1}{y}-\frac{1}{8}\right)y}{y-8}
Divide \frac{1}{y}-\frac{1}{8} by \frac{y-8}{y} by multiplying \frac{1}{y}-\frac{1}{8} by the reciprocal of \frac{y-8}{y}.
\frac{\left(\frac{8}{8y}-\frac{y}{8y}\right)y}{y-8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and 8 is 8y. Multiply \frac{1}{y} times \frac{8}{8}. Multiply \frac{1}{8} times \frac{y}{y}.
\frac{\frac{8-y}{8y}y}{y-8}
Since \frac{8}{8y} and \frac{y}{8y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\left(8-y\right)y}{8y}}{y-8}
Express \frac{8-y}{8y}y as a single fraction.
\frac{\frac{-y+8}{8}}{y-8}
Cancel out y in both numerator and denominator.
\frac{-y+8}{8\left(y-8\right)}
Express \frac{\frac{-y+8}{8}}{y-8} as a single fraction.
\frac{-\left(y-8\right)}{8\left(y-8\right)}
Extract the negative sign in -y+8.
\frac{-1}{8}
Cancel out y-8 in both numerator and denominator.
-\frac{1}{8}
Fraction \frac{-1}{8} can be rewritten as -\frac{1}{8} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}