Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Share

\frac{1}{y\times 2x}\times \frac{\frac{1}{2x}}{\frac{1}{y}}
Express \frac{\frac{1}{y}}{2x} as a single fraction.
\frac{1}{y\times 2x}\times \frac{y}{2x}
Divide \frac{1}{2x} by \frac{1}{y} by multiplying \frac{1}{2x} by the reciprocal of \frac{1}{y}.
\frac{y}{y\times 2x\times 2x}
Multiply \frac{1}{y\times 2x} times \frac{y}{2x} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2\times 2xx}
Cancel out y in both numerator and denominator.
\frac{1}{2\times 2x^{2}}
Multiply x and x to get x^{2}.
\frac{1}{4x^{2}}
Multiply 2 and 2 to get 4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{y\times 2x}\times \frac{\frac{1}{2x}}{\frac{1}{y}})
Express \frac{\frac{1}{y}}{2x} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{y\times 2x}\times \frac{y}{2x})
Divide \frac{1}{2x} by \frac{1}{y} by multiplying \frac{1}{2x} by the reciprocal of \frac{1}{y}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{y}{y\times 2x\times 2x})
Multiply \frac{1}{y\times 2x} times \frac{y}{2x} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2\times 2xx})
Cancel out y in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2\times 2x^{2}})
Multiply x and x to get x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{4x^{2}})
Multiply 2 and 2 to get 4.
-\left(4x^{2}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(4x^{2})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(4x^{2}\right)^{-2}\times 2\times 4x^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-8x^{1}\times \left(4x^{2}\right)^{-2}
Simplify.
-8x\times \left(4x^{2}\right)^{-2}
For any term t, t^{1}=t.