Evaluate
\frac{1}{x\arctan(\frac{\sin(x+1)}{\ln(2\left(2x+3\right))})}
Differentiate w.r.t. x
\frac{-4x\left(\sin(1)\cos(x)\right)^{2}\arctan(\frac{\sin(x+1)}{\ln(2\left(2x+3\right))})-4x\left(\cos(1)\sin(x)\right)^{2}\arctan(\frac{\sin(x+1)}{\ln(2\left(2x+3\right))})-4x\ln(2\left(2x+3\right))^{2}\arctan(\frac{\sin(x+1)}{\ln(2\left(2x+3\right))})-6\left(\sin(1)\cos(x)\right)^{2}\arctan(\frac{\sin(x+1)}{\ln(2\left(2x+3\right))})-6\left(\cos(1)\sin(x)\right)^{2}\arctan(\frac{\sin(x+1)}{\ln(2\left(2x+3\right))})-6\ln(2\left(2x+3\right))^{2}\arctan(\frac{\sin(x+1)}{\ln(2\left(2x+3\right))})-2\sin(2)x\sin(2x)\arctan(\frac{\sin(x+1)}{\ln(2\left(2x+3\right))})-4x^{2}\ln(2\left(2x+3\right))\cos(x+1)-3\sin(2)\sin(2x)\arctan(\frac{\sin(x+1)}{\ln(2\left(2x+3\right))})-6x\ln(2\left(2x+3\right))\cos(x+1)+4x\sin(x+1)}{\left(2x+3\right)\left(2\left(\sin(1)\cos(x)\right)^{2}+2\left(\cos(1)\sin(x)\right)^{2}+2\ln(2\left(2x+3\right))^{2}+\sin(2)\sin(2x)\right)\left(x\arctan(\frac{\sin(x+1)}{\ln(2\left(2x+3\right))})\right)^{2}}
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}