Evaluate
-32-\frac{8}{x}
Expand
-32-\frac{8}{x}
Graph
Share
Copied to clipboard
\left(\frac{1}{x}+4\right)\left(-8\right)
Divide \frac{1}{x}+4 by \frac{1}{-8} by multiplying \frac{1}{x}+4 by the reciprocal of \frac{1}{-8}.
\left(\frac{1}{x}+\frac{4x}{x}\right)\left(-8\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{x}{x}.
\frac{1+4x}{x}\left(-8\right)
Since \frac{1}{x} and \frac{4x}{x} have the same denominator, add them by adding their numerators.
\frac{-\left(1+4x\right)\times 8}{x}
Express \frac{1+4x}{x}\left(-8\right) as a single fraction.
\frac{-8\left(1+4x\right)}{x}
Multiply -1 and 8 to get -8.
\frac{-8-32x}{x}
Use the distributive property to multiply -8 by 1+4x.
\left(\frac{1}{x}+4\right)\left(-8\right)
Divide \frac{1}{x}+4 by \frac{1}{-8} by multiplying \frac{1}{x}+4 by the reciprocal of \frac{1}{-8}.
\left(\frac{1}{x}+\frac{4x}{x}\right)\left(-8\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{x}{x}.
\frac{1+4x}{x}\left(-8\right)
Since \frac{1}{x} and \frac{4x}{x} have the same denominator, add them by adding their numerators.
\frac{-\left(1+4x\right)\times 8}{x}
Express \frac{1+4x}{x}\left(-8\right) as a single fraction.
\frac{-8\left(1+4x\right)}{x}
Multiply -1 and 8 to get -8.
\frac{-8-32x}{x}
Use the distributive property to multiply -8 by 1+4x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}