Evaluate
\frac{y\left(2x+y\right)}{7y^{2}-x}
Expand
\frac{2xy+y^{2}}{7y^{2}-x}
Share
Copied to clipboard
\frac{\frac{y}{xy}+\frac{2x}{xy}}{\frac{7}{x}-\frac{1}{y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y is xy. Multiply \frac{1}{x} times \frac{y}{y}. Multiply \frac{2}{y} times \frac{x}{x}.
\frac{\frac{y+2x}{xy}}{\frac{7}{x}-\frac{1}{y^{2}}}
Since \frac{y}{xy} and \frac{2x}{xy} have the same denominator, add them by adding their numerators.
\frac{\frac{y+2x}{xy}}{\frac{7y^{2}}{xy^{2}}-\frac{x}{xy^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y^{2} is xy^{2}. Multiply \frac{7}{x} times \frac{y^{2}}{y^{2}}. Multiply \frac{1}{y^{2}} times \frac{x}{x}.
\frac{\frac{y+2x}{xy}}{\frac{7y^{2}-x}{xy^{2}}}
Since \frac{7y^{2}}{xy^{2}} and \frac{x}{xy^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(y+2x\right)xy^{2}}{xy\left(7y^{2}-x\right)}
Divide \frac{y+2x}{xy} by \frac{7y^{2}-x}{xy^{2}} by multiplying \frac{y+2x}{xy} by the reciprocal of \frac{7y^{2}-x}{xy^{2}}.
\frac{y\left(2x+y\right)}{-x+7y^{2}}
Cancel out xy in both numerator and denominator.
\frac{2yx+y^{2}}{-x+7y^{2}}
Use the distributive property to multiply y by 2x+y.
\frac{\frac{y}{xy}+\frac{2x}{xy}}{\frac{7}{x}-\frac{1}{y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y is xy. Multiply \frac{1}{x} times \frac{y}{y}. Multiply \frac{2}{y} times \frac{x}{x}.
\frac{\frac{y+2x}{xy}}{\frac{7}{x}-\frac{1}{y^{2}}}
Since \frac{y}{xy} and \frac{2x}{xy} have the same denominator, add them by adding their numerators.
\frac{\frac{y+2x}{xy}}{\frac{7y^{2}}{xy^{2}}-\frac{x}{xy^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y^{2} is xy^{2}. Multiply \frac{7}{x} times \frac{y^{2}}{y^{2}}. Multiply \frac{1}{y^{2}} times \frac{x}{x}.
\frac{\frac{y+2x}{xy}}{\frac{7y^{2}-x}{xy^{2}}}
Since \frac{7y^{2}}{xy^{2}} and \frac{x}{xy^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(y+2x\right)xy^{2}}{xy\left(7y^{2}-x\right)}
Divide \frac{y+2x}{xy} by \frac{7y^{2}-x}{xy^{2}} by multiplying \frac{y+2x}{xy} by the reciprocal of \frac{7y^{2}-x}{xy^{2}}.
\frac{y\left(2x+y\right)}{-x+7y^{2}}
Cancel out xy in both numerator and denominator.
\frac{2yx+y^{2}}{-x+7y^{2}}
Use the distributive property to multiply y by 2x+y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}