Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{y^{2}}{x^{2}y^{2}}-\frac{x^{2}}{x^{2}y^{2}}}{\frac{1}{x^{2}}-\frac{2}{xy}+\frac{1}{y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and y^{2} is x^{2}y^{2}. Multiply \frac{1}{x^{2}} times \frac{y^{2}}{y^{2}}. Multiply \frac{1}{y^{2}} times \frac{x^{2}}{x^{2}}.
\frac{\frac{y^{2}-x^{2}}{x^{2}y^{2}}}{\frac{1}{x^{2}}-\frac{2}{xy}+\frac{1}{y^{2}}}
Since \frac{y^{2}}{x^{2}y^{2}} and \frac{x^{2}}{x^{2}y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}-x^{2}}{x^{2}y^{2}}}{\frac{y}{yx^{2}}-\frac{2x}{yx^{2}}+\frac{1}{y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and xy is yx^{2}. Multiply \frac{1}{x^{2}} times \frac{y}{y}. Multiply \frac{2}{xy} times \frac{x}{x}.
\frac{\frac{y^{2}-x^{2}}{x^{2}y^{2}}}{\frac{y-2x}{yx^{2}}+\frac{1}{y^{2}}}
Since \frac{y}{yx^{2}} and \frac{2x}{yx^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}-x^{2}}{x^{2}y^{2}}}{\frac{\left(y-2x\right)y}{x^{2}y^{2}}+\frac{x^{2}}{x^{2}y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of yx^{2} and y^{2} is x^{2}y^{2}. Multiply \frac{y-2x}{yx^{2}} times \frac{y}{y}. Multiply \frac{1}{y^{2}} times \frac{x^{2}}{x^{2}}.
\frac{\frac{y^{2}-x^{2}}{x^{2}y^{2}}}{\frac{\left(y-2x\right)y+x^{2}}{x^{2}y^{2}}}
Since \frac{\left(y-2x\right)y}{x^{2}y^{2}} and \frac{x^{2}}{x^{2}y^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{y^{2}-x^{2}}{x^{2}y^{2}}}{\frac{y^{2}-2xy+x^{2}}{x^{2}y^{2}}}
Do the multiplications in \left(y-2x\right)y+x^{2}.
\frac{\left(y^{2}-x^{2}\right)x^{2}y^{2}}{x^{2}y^{2}\left(y^{2}-2xy+x^{2}\right)}
Divide \frac{y^{2}-x^{2}}{x^{2}y^{2}} by \frac{y^{2}-2xy+x^{2}}{x^{2}y^{2}} by multiplying \frac{y^{2}-x^{2}}{x^{2}y^{2}} by the reciprocal of \frac{y^{2}-2xy+x^{2}}{x^{2}y^{2}}.
\frac{-x^{2}+y^{2}}{x^{2}-2xy+y^{2}}
Cancel out x^{2}y^{2} in both numerator and denominator.
\frac{\left(x+y\right)\left(-x+y\right)}{\left(-x+y\right)^{2}}
Factor the expressions that are not already factored.
\frac{x+y}{-x+y}
Cancel out -x+y in both numerator and denominator.
\frac{\frac{y^{2}}{x^{2}y^{2}}-\frac{x^{2}}{x^{2}y^{2}}}{\frac{1}{x^{2}}-\frac{2}{xy}+\frac{1}{y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and y^{2} is x^{2}y^{2}. Multiply \frac{1}{x^{2}} times \frac{y^{2}}{y^{2}}. Multiply \frac{1}{y^{2}} times \frac{x^{2}}{x^{2}}.
\frac{\frac{y^{2}-x^{2}}{x^{2}y^{2}}}{\frac{1}{x^{2}}-\frac{2}{xy}+\frac{1}{y^{2}}}
Since \frac{y^{2}}{x^{2}y^{2}} and \frac{x^{2}}{x^{2}y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}-x^{2}}{x^{2}y^{2}}}{\frac{y}{yx^{2}}-\frac{2x}{yx^{2}}+\frac{1}{y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and xy is yx^{2}. Multiply \frac{1}{x^{2}} times \frac{y}{y}. Multiply \frac{2}{xy} times \frac{x}{x}.
\frac{\frac{y^{2}-x^{2}}{x^{2}y^{2}}}{\frac{y-2x}{yx^{2}}+\frac{1}{y^{2}}}
Since \frac{y}{yx^{2}} and \frac{2x}{yx^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}-x^{2}}{x^{2}y^{2}}}{\frac{\left(y-2x\right)y}{x^{2}y^{2}}+\frac{x^{2}}{x^{2}y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of yx^{2} and y^{2} is x^{2}y^{2}. Multiply \frac{y-2x}{yx^{2}} times \frac{y}{y}. Multiply \frac{1}{y^{2}} times \frac{x^{2}}{x^{2}}.
\frac{\frac{y^{2}-x^{2}}{x^{2}y^{2}}}{\frac{\left(y-2x\right)y+x^{2}}{x^{2}y^{2}}}
Since \frac{\left(y-2x\right)y}{x^{2}y^{2}} and \frac{x^{2}}{x^{2}y^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{y^{2}-x^{2}}{x^{2}y^{2}}}{\frac{y^{2}-2xy+x^{2}}{x^{2}y^{2}}}
Do the multiplications in \left(y-2x\right)y+x^{2}.
\frac{\left(y^{2}-x^{2}\right)x^{2}y^{2}}{x^{2}y^{2}\left(y^{2}-2xy+x^{2}\right)}
Divide \frac{y^{2}-x^{2}}{x^{2}y^{2}} by \frac{y^{2}-2xy+x^{2}}{x^{2}y^{2}} by multiplying \frac{y^{2}-x^{2}}{x^{2}y^{2}} by the reciprocal of \frac{y^{2}-2xy+x^{2}}{x^{2}y^{2}}.
\frac{-x^{2}+y^{2}}{x^{2}-2xy+y^{2}}
Cancel out x^{2}y^{2} in both numerator and denominator.
\frac{\left(x+y\right)\left(-x+y\right)}{\left(-x+y\right)^{2}}
Factor the expressions that are not already factored.
\frac{x+y}{-x+y}
Cancel out -x+y in both numerator and denominator.