Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x+b-a}{\left(x+a+b\right)\left(x+b-a\right)}-\frac{x+a+b}{\left(x+a+b\right)\left(x+b-a\right)}}{\frac{1}{x-a+b}-\frac{1}{x+a+b}}de
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+a+b and x-a+b is \left(x+a+b\right)\left(x+b-a\right). Multiply \frac{1}{x+a+b} times \frac{x+b-a}{x+b-a}. Multiply \frac{1}{x-a+b} times \frac{x+a+b}{x+a+b}.
\frac{\frac{x+b-a-\left(x+a+b\right)}{\left(x+a+b\right)\left(x+b-a\right)}}{\frac{1}{x-a+b}-\frac{1}{x+a+b}}de
Since \frac{x+b-a}{\left(x+a+b\right)\left(x+b-a\right)} and \frac{x+a+b}{\left(x+a+b\right)\left(x+b-a\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x+b-a-x-a-b}{\left(x+a+b\right)\left(x+b-a\right)}}{\frac{1}{x-a+b}-\frac{1}{x+a+b}}de
Do the multiplications in x+b-a-\left(x+a+b\right).
\frac{\frac{-2a}{\left(x+a+b\right)\left(x+b-a\right)}}{\frac{1}{x-a+b}-\frac{1}{x+a+b}}de
Combine like terms in x+b-a-x-a-b.
\frac{\frac{-2a}{\left(x+a+b\right)\left(x+b-a\right)}}{\frac{x+a+b}{\left(x+a+b\right)\left(x+b-a\right)}-\frac{x+b-a}{\left(x+a+b\right)\left(x+b-a\right)}}de
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-a+b and x+a+b is \left(x+a+b\right)\left(x+b-a\right). Multiply \frac{1}{x-a+b} times \frac{x+a+b}{x+a+b}. Multiply \frac{1}{x+a+b} times \frac{x+b-a}{x+b-a}.
\frac{\frac{-2a}{\left(x+a+b\right)\left(x+b-a\right)}}{\frac{x+a+b-\left(x+b-a\right)}{\left(x+a+b\right)\left(x+b-a\right)}}de
Since \frac{x+a+b}{\left(x+a+b\right)\left(x+b-a\right)} and \frac{x+b-a}{\left(x+a+b\right)\left(x+b-a\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-2a}{\left(x+a+b\right)\left(x+b-a\right)}}{\frac{x+a+b-x-b+a}{\left(x+a+b\right)\left(x+b-a\right)}}de
Do the multiplications in x+a+b-\left(x+b-a\right).
\frac{\frac{-2a}{\left(x+a+b\right)\left(x+b-a\right)}}{\frac{2a}{\left(x+a+b\right)\left(x+b-a\right)}}de
Combine like terms in x+a+b-x-b+a.
\frac{-2a\left(x+a+b\right)\left(x+b-a\right)}{\left(x+a+b\right)\left(x+b-a\right)\times 2a}de
Divide \frac{-2a}{\left(x+a+b\right)\left(x+b-a\right)} by \frac{2a}{\left(x+a+b\right)\left(x+b-a\right)} by multiplying \frac{-2a}{\left(x+a+b\right)\left(x+b-a\right)} by the reciprocal of \frac{2a}{\left(x+a+b\right)\left(x+b-a\right)}.
-de
Cancel out 2a\left(x+a+b\right)\left(x+b-a\right) in both numerator and denominator.
\frac{\frac{x+b-a}{\left(x+a+b\right)\left(x+b-a\right)}-\frac{x+a+b}{\left(x+a+b\right)\left(x+b-a\right)}}{\frac{1}{x-a+b}-\frac{1}{x+a+b}}de
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+a+b and x-a+b is \left(x+a+b\right)\left(x+b-a\right). Multiply \frac{1}{x+a+b} times \frac{x+b-a}{x+b-a}. Multiply \frac{1}{x-a+b} times \frac{x+a+b}{x+a+b}.
\frac{\frac{x+b-a-\left(x+a+b\right)}{\left(x+a+b\right)\left(x+b-a\right)}}{\frac{1}{x-a+b}-\frac{1}{x+a+b}}de
Since \frac{x+b-a}{\left(x+a+b\right)\left(x+b-a\right)} and \frac{x+a+b}{\left(x+a+b\right)\left(x+b-a\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x+b-a-x-a-b}{\left(x+a+b\right)\left(x+b-a\right)}}{\frac{1}{x-a+b}-\frac{1}{x+a+b}}de
Do the multiplications in x+b-a-\left(x+a+b\right).
\frac{\frac{-2a}{\left(x+a+b\right)\left(x+b-a\right)}}{\frac{1}{x-a+b}-\frac{1}{x+a+b}}de
Combine like terms in x+b-a-x-a-b.
\frac{\frac{-2a}{\left(x+a+b\right)\left(x+b-a\right)}}{\frac{x+a+b}{\left(x+a+b\right)\left(x+b-a\right)}-\frac{x+b-a}{\left(x+a+b\right)\left(x+b-a\right)}}de
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-a+b and x+a+b is \left(x+a+b\right)\left(x+b-a\right). Multiply \frac{1}{x-a+b} times \frac{x+a+b}{x+a+b}. Multiply \frac{1}{x+a+b} times \frac{x+b-a}{x+b-a}.
\frac{\frac{-2a}{\left(x+a+b\right)\left(x+b-a\right)}}{\frac{x+a+b-\left(x+b-a\right)}{\left(x+a+b\right)\left(x+b-a\right)}}de
Since \frac{x+a+b}{\left(x+a+b\right)\left(x+b-a\right)} and \frac{x+b-a}{\left(x+a+b\right)\left(x+b-a\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-2a}{\left(x+a+b\right)\left(x+b-a\right)}}{\frac{x+a+b-x-b+a}{\left(x+a+b\right)\left(x+b-a\right)}}de
Do the multiplications in x+a+b-\left(x+b-a\right).
\frac{\frac{-2a}{\left(x+a+b\right)\left(x+b-a\right)}}{\frac{2a}{\left(x+a+b\right)\left(x+b-a\right)}}de
Combine like terms in x+a+b-x-b+a.
\frac{-2a\left(x+a+b\right)\left(x+b-a\right)}{\left(x+a+b\right)\left(x+b-a\right)\times 2a}de
Divide \frac{-2a}{\left(x+a+b\right)\left(x+b-a\right)} by \frac{2a}{\left(x+a+b\right)\left(x+b-a\right)} by multiplying \frac{-2a}{\left(x+a+b\right)\left(x+b-a\right)} by the reciprocal of \frac{2a}{\left(x+a+b\right)\left(x+b-a\right)}.
-de
Cancel out 2a\left(x+a+b\right)\left(x+b-a\right) in both numerator and denominator.