Evaluate
\frac{t}{t^{2}-1}
Differentiate w.r.t. t
\frac{-t^{2}-1}{\left(t^{2}-1\right)^{2}}
Quiz
Polynomial
5 problems similar to:
\frac { \frac { 1 } { t } } { 1 - ( \frac { 1 } { t } ) ^ { 2 } }
Share
Copied to clipboard
\frac{\frac{1}{t}}{1-\frac{1^{2}}{t^{2}}}
To raise \frac{1}{t} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{1}{t}}{1-\frac{1}{t^{2}}}
Calculate 1 to the power of 2 and get 1.
\frac{\frac{1}{t}}{\frac{t^{2}}{t^{2}}-\frac{1}{t^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{t^{2}}{t^{2}}.
\frac{\frac{1}{t}}{\frac{t^{2}-1}{t^{2}}}
Since \frac{t^{2}}{t^{2}} and \frac{1}{t^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{t^{2}}{t\left(t^{2}-1\right)}
Divide \frac{1}{t} by \frac{t^{2}-1}{t^{2}} by multiplying \frac{1}{t} by the reciprocal of \frac{t^{2}-1}{t^{2}}.
\frac{t}{t^{2}-1}
Cancel out t in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{\frac{1}{t}}{1-\frac{1^{2}}{t^{2}}})
To raise \frac{1}{t} to a power, raise both numerator and denominator to the power and then divide.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{\frac{1}{t}}{1-\frac{1}{t^{2}}})
Calculate 1 to the power of 2 and get 1.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{\frac{1}{t}}{\frac{t^{2}}{t^{2}}-\frac{1}{t^{2}}})
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{t^{2}}{t^{2}}.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{\frac{1}{t}}{\frac{t^{2}-1}{t^{2}}})
Since \frac{t^{2}}{t^{2}} and \frac{1}{t^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{t^{2}}{t\left(t^{2}-1\right)})
Divide \frac{1}{t} by \frac{t^{2}-1}{t^{2}} by multiplying \frac{1}{t} by the reciprocal of \frac{t^{2}-1}{t^{2}}.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{t}{t^{2}-1})
Cancel out t in both numerator and denominator.
\frac{\left(t^{2}-1\right)\frac{\mathrm{d}}{\mathrm{d}t}(t^{1})-t^{1}\frac{\mathrm{d}}{\mathrm{d}t}(t^{2}-1)}{\left(t^{2}-1\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(t^{2}-1\right)t^{1-1}-t^{1}\times 2t^{2-1}}{\left(t^{2}-1\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(t^{2}-1\right)t^{0}-t^{1}\times 2t^{1}}{\left(t^{2}-1\right)^{2}}
Do the arithmetic.
\frac{t^{2}t^{0}-t^{0}-t^{1}\times 2t^{1}}{\left(t^{2}-1\right)^{2}}
Expand using distributive property.
\frac{t^{2}-t^{0}-2t^{1+1}}{\left(t^{2}-1\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{t^{2}-t^{0}-2t^{2}}{\left(t^{2}-1\right)^{2}}
Do the arithmetic.
\frac{\left(1-2\right)t^{2}-t^{0}}{\left(t^{2}-1\right)^{2}}
Combine like terms.
\frac{-t^{2}-t^{0}}{\left(t^{2}-1\right)^{2}}
Subtract 2 from 1.
\frac{-t^{2}-1}{\left(t^{2}-1\right)^{2}}
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}