Evaluate
-\frac{2b-a}{3b-a}
Expand
-\frac{2b-a}{3b-a}
Share
Copied to clipboard
\frac{\frac{a+b}{\left(a+b\right)\left(a-b\right)}-\frac{3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-b and a+b is \left(a+b\right)\left(a-b\right). Multiply \frac{1}{a-b} times \frac{a+b}{a+b}. Multiply \frac{3}{a+b} times \frac{a-b}{a-b}.
\frac{\frac{a+b-3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
Since \frac{a+b}{\left(a+b\right)\left(a-b\right)} and \frac{3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a+b-3a+3b}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
Do the multiplications in a+b-3\left(a-b\right).
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
Combine like terms in a+b-3a+3b.
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2\left(a+b\right)}{\left(a+b\right)\left(-a+b\right)}+\frac{4\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b-a and b+a is \left(a+b\right)\left(-a+b\right). Multiply \frac{2}{b-a} times \frac{a+b}{a+b}. Multiply \frac{4}{b+a} times \frac{-a+b}{-a+b}.
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2\left(a+b\right)+4\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}}
Since \frac{2\left(a+b\right)}{\left(a+b\right)\left(-a+b\right)} and \frac{4\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2a+2b-4a+4b}{\left(a+b\right)\left(-a+b\right)}}
Do the multiplications in 2\left(a+b\right)+4\left(-a+b\right).
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{-2a+6b}{\left(a+b\right)\left(-a+b\right)}}
Combine like terms in 2a+2b-4a+4b.
\frac{\left(-2a+4b\right)\left(a+b\right)\left(-a+b\right)}{\left(a+b\right)\left(a-b\right)\left(-2a+6b\right)}
Divide \frac{-2a+4b}{\left(a+b\right)\left(a-b\right)} by \frac{-2a+6b}{\left(a+b\right)\left(-a+b\right)} by multiplying \frac{-2a+4b}{\left(a+b\right)\left(a-b\right)} by the reciprocal of \frac{-2a+6b}{\left(a+b\right)\left(-a+b\right)}.
\frac{-\left(a+b\right)\left(a-b\right)\left(-2a+4b\right)}{\left(a+b\right)\left(a-b\right)\left(-2a+6b\right)}
Extract the negative sign in -a+b.
\frac{-\left(-2a+4b\right)}{-2a+6b}
Cancel out \left(a+b\right)\left(a-b\right) in both numerator and denominator.
\frac{-2\left(-a+2b\right)}{2\left(-a+3b\right)}
Factor the expressions that are not already factored.
\frac{-\left(-a+2b\right)}{-a+3b}
Cancel out 2 in both numerator and denominator.
\frac{a-2b}{-a+3b}
Expand the expression.
\frac{\frac{a+b}{\left(a+b\right)\left(a-b\right)}-\frac{3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-b and a+b is \left(a+b\right)\left(a-b\right). Multiply \frac{1}{a-b} times \frac{a+b}{a+b}. Multiply \frac{3}{a+b} times \frac{a-b}{a-b}.
\frac{\frac{a+b-3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
Since \frac{a+b}{\left(a+b\right)\left(a-b\right)} and \frac{3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a+b-3a+3b}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
Do the multiplications in a+b-3\left(a-b\right).
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
Combine like terms in a+b-3a+3b.
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2\left(a+b\right)}{\left(a+b\right)\left(-a+b\right)}+\frac{4\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b-a and b+a is \left(a+b\right)\left(-a+b\right). Multiply \frac{2}{b-a} times \frac{a+b}{a+b}. Multiply \frac{4}{b+a} times \frac{-a+b}{-a+b}.
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2\left(a+b\right)+4\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}}
Since \frac{2\left(a+b\right)}{\left(a+b\right)\left(-a+b\right)} and \frac{4\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2a+2b-4a+4b}{\left(a+b\right)\left(-a+b\right)}}
Do the multiplications in 2\left(a+b\right)+4\left(-a+b\right).
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{-2a+6b}{\left(a+b\right)\left(-a+b\right)}}
Combine like terms in 2a+2b-4a+4b.
\frac{\left(-2a+4b\right)\left(a+b\right)\left(-a+b\right)}{\left(a+b\right)\left(a-b\right)\left(-2a+6b\right)}
Divide \frac{-2a+4b}{\left(a+b\right)\left(a-b\right)} by \frac{-2a+6b}{\left(a+b\right)\left(-a+b\right)} by multiplying \frac{-2a+4b}{\left(a+b\right)\left(a-b\right)} by the reciprocal of \frac{-2a+6b}{\left(a+b\right)\left(-a+b\right)}.
\frac{-\left(a+b\right)\left(a-b\right)\left(-2a+4b\right)}{\left(a+b\right)\left(a-b\right)\left(-2a+6b\right)}
Extract the negative sign in -a+b.
\frac{-\left(-2a+4b\right)}{-2a+6b}
Cancel out \left(a+b\right)\left(a-b\right) in both numerator and denominator.
\frac{-2\left(-a+2b\right)}{2\left(-a+3b\right)}
Factor the expressions that are not already factored.
\frac{-\left(-a+2b\right)}{-a+3b}
Cancel out 2 in both numerator and denominator.
\frac{a-2b}{-a+3b}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}