\frac { \frac { 1 } { 9 } x + \frac { 1 } { 49 } ( 200 - x ) } { 200 } = 8 \%
Solve for x
x = \frac{657}{5} = 131\frac{2}{5} = 131.4
Graph
Share
Copied to clipboard
\frac{1}{9}x+\frac{1}{49}\left(200-x\right)=2\times 8
Multiply both sides of the equation by 200, the least common multiple of 200,100.
\frac{1}{9}x+\frac{1}{49}\times 200+\frac{1}{49}\left(-1\right)x=2\times 8
Use the distributive property to multiply \frac{1}{49} by 200-x.
\frac{1}{9}x+\frac{200}{49}+\frac{1}{49}\left(-1\right)x=2\times 8
Multiply \frac{1}{49} and 200 to get \frac{200}{49}.
\frac{1}{9}x+\frac{200}{49}-\frac{1}{49}x=2\times 8
Multiply \frac{1}{49} and -1 to get -\frac{1}{49}.
\frac{40}{441}x+\frac{200}{49}=2\times 8
Combine \frac{1}{9}x and -\frac{1}{49}x to get \frac{40}{441}x.
\frac{40}{441}x+\frac{200}{49}=16
Multiply 2 and 8 to get 16.
\frac{40}{441}x=16-\frac{200}{49}
Subtract \frac{200}{49} from both sides.
\frac{40}{441}x=\frac{784}{49}-\frac{200}{49}
Convert 16 to fraction \frac{784}{49}.
\frac{40}{441}x=\frac{784-200}{49}
Since \frac{784}{49} and \frac{200}{49} have the same denominator, subtract them by subtracting their numerators.
\frac{40}{441}x=\frac{584}{49}
Subtract 200 from 784 to get 584.
x=\frac{584}{49}\times \frac{441}{40}
Multiply both sides by \frac{441}{40}, the reciprocal of \frac{40}{441}.
x=\frac{584\times 441}{49\times 40}
Multiply \frac{584}{49} times \frac{441}{40} by multiplying numerator times numerator and denominator times denominator.
x=\frac{257544}{1960}
Do the multiplications in the fraction \frac{584\times 441}{49\times 40}.
x=\frac{657}{5}
Reduce the fraction \frac{257544}{1960} to lowest terms by extracting and canceling out 392.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}