Evaluate
-\frac{81}{61504000000}\approx -1.316987513 \cdot 10^{-9}
Factor
-\frac{81}{61504000000} = -1.316987513007284 \times 10^{-9}
Share
Copied to clipboard
\frac{\frac{1}{64}\times \left(30\times 10^{-3}\right)^{4}}{-3.1^{2}}
Cancel out \pi in both numerator and denominator.
\frac{\frac{1}{64}\times \left(30\times \frac{1}{1000}\right)^{4}}{-3.1^{2}}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{\frac{1}{64}\times \left(\frac{3}{100}\right)^{4}}{-3.1^{2}}
Multiply 30 and \frac{1}{1000} to get \frac{3}{100}.
\frac{\frac{1}{64}\times \frac{81}{100000000}}{-3.1^{2}}
Calculate \frac{3}{100} to the power of 4 and get \frac{81}{100000000}.
\frac{\frac{81}{6400000000}}{-3.1^{2}}
Multiply \frac{1}{64} and \frac{81}{100000000} to get \frac{81}{6400000000}.
\frac{\frac{81}{6400000000}}{-9.61}
Calculate 3.1 to the power of 2 and get 9.61.
\frac{81}{6400000000\left(-9.61\right)}
Express \frac{\frac{81}{6400000000}}{-9.61} as a single fraction.
\frac{81}{-61504000000}
Multiply 6400000000 and -9.61 to get -61504000000.
-\frac{81}{61504000000}
Fraction \frac{81}{-61504000000} can be rewritten as -\frac{81}{61504000000} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}