Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{1}{6}x+\frac{1}{y}\right)\times \frac{1}{5}y}{\frac{1}{3}x}
Divide \frac{1}{6}x+\frac{1}{y} by \frac{\frac{1}{3}x}{\frac{1}{5}y} by multiplying \frac{1}{6}x+\frac{1}{y} by the reciprocal of \frac{\frac{1}{3}x}{\frac{1}{5}y}.
\frac{\left(\frac{1}{6}x\times \frac{1}{5}+\frac{1}{y}\times \frac{1}{5}\right)y}{\frac{1}{3}x}
Use the distributive property to multiply \frac{1}{6}x+\frac{1}{y} by \frac{1}{5}.
\frac{\left(\frac{1\times 1}{6\times 5}x+\frac{1}{y}\times \frac{1}{5}\right)y}{\frac{1}{3}x}
Multiply \frac{1}{6} times \frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(\frac{1}{30}x+\frac{1}{y}\times \frac{1}{5}\right)y}{\frac{1}{3}x}
Do the multiplications in the fraction \frac{1\times 1}{6\times 5}.
\frac{\left(\frac{1}{30}x+\frac{1}{y\times 5}\right)y}{\frac{1}{3}x}
Multiply \frac{1}{y} times \frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{1}{30}xy+\frac{1}{y\times 5}y}{\frac{1}{3}x}
Use the distributive property to multiply \frac{1}{30}x+\frac{1}{y\times 5} by y.
\frac{\frac{1}{30}xy+\frac{y}{y\times 5}}{\frac{1}{3}x}
Express \frac{1}{y\times 5}y as a single fraction.
\frac{\frac{1}{30}xy+\frac{1}{5}}{\frac{1}{3}x}
Cancel out y in both numerator and denominator.
\frac{\left(\frac{1}{6}x+\frac{1}{y}\right)\times \frac{1}{5}y}{\frac{1}{3}x}
Divide \frac{1}{6}x+\frac{1}{y} by \frac{\frac{1}{3}x}{\frac{1}{5}y} by multiplying \frac{1}{6}x+\frac{1}{y} by the reciprocal of \frac{\frac{1}{3}x}{\frac{1}{5}y}.
\frac{\left(\frac{1}{6}x\times \frac{1}{5}+\frac{1}{y}\times \frac{1}{5}\right)y}{\frac{1}{3}x}
Use the distributive property to multiply \frac{1}{6}x+\frac{1}{y} by \frac{1}{5}.
\frac{\left(\frac{1\times 1}{6\times 5}x+\frac{1}{y}\times \frac{1}{5}\right)y}{\frac{1}{3}x}
Multiply \frac{1}{6} times \frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(\frac{1}{30}x+\frac{1}{y}\times \frac{1}{5}\right)y}{\frac{1}{3}x}
Do the multiplications in the fraction \frac{1\times 1}{6\times 5}.
\frac{\left(\frac{1}{30}x+\frac{1}{y\times 5}\right)y}{\frac{1}{3}x}
Multiply \frac{1}{y} times \frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{1}{30}xy+\frac{1}{y\times 5}y}{\frac{1}{3}x}
Use the distributive property to multiply \frac{1}{30}x+\frac{1}{y\times 5} by y.
\frac{\frac{1}{30}xy+\frac{y}{y\times 5}}{\frac{1}{3}x}
Express \frac{1}{y\times 5}y as a single fraction.
\frac{\frac{1}{30}xy+\frac{1}{5}}{\frac{1}{3}x}
Cancel out y in both numerator and denominator.