Evaluate
-\frac{15x-1}{10x+1}
Expand
\frac{1-15x}{10x+1}
Graph
Share
Copied to clipboard
\frac{\frac{1}{5x}-\frac{3\times 5x}{5x}}{2+\frac{1}{5x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{5x}{5x}.
\frac{\frac{1-3\times 5x}{5x}}{2+\frac{1}{5x}}
Since \frac{1}{5x} and \frac{3\times 5x}{5x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1-15x}{5x}}{2+\frac{1}{5x}}
Do the multiplications in 1-3\times 5x.
\frac{\frac{1-15x}{5x}}{\frac{2\times 5x}{5x}+\frac{1}{5x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{5x}{5x}.
\frac{\frac{1-15x}{5x}}{\frac{2\times 5x+1}{5x}}
Since \frac{2\times 5x}{5x} and \frac{1}{5x} have the same denominator, add them by adding their numerators.
\frac{\frac{1-15x}{5x}}{\frac{10x+1}{5x}}
Do the multiplications in 2\times 5x+1.
\frac{\left(1-15x\right)\times 5x}{5x\left(10x+1\right)}
Divide \frac{1-15x}{5x} by \frac{10x+1}{5x} by multiplying \frac{1-15x}{5x} by the reciprocal of \frac{10x+1}{5x}.
\frac{-15x+1}{10x+1}
Cancel out 5x in both numerator and denominator.
\frac{\frac{1}{5x}-\frac{3\times 5x}{5x}}{2+\frac{1}{5x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{5x}{5x}.
\frac{\frac{1-3\times 5x}{5x}}{2+\frac{1}{5x}}
Since \frac{1}{5x} and \frac{3\times 5x}{5x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1-15x}{5x}}{2+\frac{1}{5x}}
Do the multiplications in 1-3\times 5x.
\frac{\frac{1-15x}{5x}}{\frac{2\times 5x}{5x}+\frac{1}{5x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{5x}{5x}.
\frac{\frac{1-15x}{5x}}{\frac{2\times 5x+1}{5x}}
Since \frac{2\times 5x}{5x} and \frac{1}{5x} have the same denominator, add them by adding their numerators.
\frac{\frac{1-15x}{5x}}{\frac{10x+1}{5x}}
Do the multiplications in 2\times 5x+1.
\frac{\left(1-15x\right)\times 5x}{5x\left(10x+1\right)}
Divide \frac{1-15x}{5x} by \frac{10x+1}{5x} by multiplying \frac{1-15x}{5x} by the reciprocal of \frac{10x+1}{5x}.
\frac{-15x+1}{10x+1}
Cancel out 5x in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}