Solve for I
I=\frac{4}{7}\approx 0.571428571
Share
Copied to clipboard
\frac{1}{4}=\frac{3}{4}I\left(\frac{1}{3}+\frac{1}{4}\right)
Variable I cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by I.
\frac{1}{4}=\frac{3}{4}I\left(\frac{4}{12}+\frac{3}{12}\right)
Least common multiple of 3 and 4 is 12. Convert \frac{1}{3} and \frac{1}{4} to fractions with denominator 12.
\frac{1}{4}=\frac{3}{4}I\times \frac{4+3}{12}
Since \frac{4}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{1}{4}=\frac{3}{4}I\times \frac{7}{12}
Add 4 and 3 to get 7.
\frac{1}{4}=\frac{3\times 7}{4\times 12}I
Multiply \frac{3}{4} times \frac{7}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{4}=\frac{21}{48}I
Do the multiplications in the fraction \frac{3\times 7}{4\times 12}.
\frac{1}{4}=\frac{7}{16}I
Reduce the fraction \frac{21}{48} to lowest terms by extracting and canceling out 3.
\frac{7}{16}I=\frac{1}{4}
Swap sides so that all variable terms are on the left hand side.
I=\frac{1}{4}\times \frac{16}{7}
Multiply both sides by \frac{16}{7}, the reciprocal of \frac{7}{16}.
I=\frac{1\times 16}{4\times 7}
Multiply \frac{1}{4} times \frac{16}{7} by multiplying numerator times numerator and denominator times denominator.
I=\frac{16}{28}
Do the multiplications in the fraction \frac{1\times 16}{4\times 7}.
I=\frac{4}{7}
Reduce the fraction \frac{16}{28} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}