Skip to main content
Solve for V
Tick mark Image
Solve for A
Tick mark Image

Similar Problems from Web Search

Share

v\left(\frac{1}{3}\left(A-V\right)+2\right)=\left(v+A\right)\left(2-\frac{1}{3}v\right)
Multiply both sides of the equation by v\left(v+A\right), the least common multiple of A+v,v.
v\left(\frac{1}{3}A-\frac{1}{3}V+2\right)=\left(v+A\right)\left(2-\frac{1}{3}v\right)
Use the distributive property to multiply \frac{1}{3} by A-V.
\frac{1}{3}vA-\frac{1}{3}vV+2v=\left(v+A\right)\left(2-\frac{1}{3}v\right)
Use the distributive property to multiply v by \frac{1}{3}A-\frac{1}{3}V+2.
\frac{1}{3}vA-\frac{1}{3}vV+2v=2v-\frac{1}{3}v^{2}+2A-\frac{1}{3}Av
Use the distributive property to multiply v+A by 2-\frac{1}{3}v.
-\frac{1}{3}vV+2v=2v-\frac{1}{3}v^{2}+2A-\frac{1}{3}Av-\frac{1}{3}vA
Subtract \frac{1}{3}vA from both sides.
-\frac{1}{3}vV+2v=2v-\frac{1}{3}v^{2}+2A-\frac{2}{3}Av
Combine -\frac{1}{3}Av and -\frac{1}{3}vA to get -\frac{2}{3}Av.
-\frac{1}{3}vV=2v-\frac{1}{3}v^{2}+2A-\frac{2}{3}Av-2v
Subtract 2v from both sides.
-\frac{1}{3}vV=-\frac{1}{3}v^{2}+2A-\frac{2}{3}Av
Combine 2v and -2v to get 0.
\left(-\frac{v}{3}\right)V=-\frac{2Av}{3}-\frac{v^{2}}{3}+2A
The equation is in standard form.
\frac{\left(-\frac{v}{3}\right)V}{-\frac{v}{3}}=\frac{-\frac{2Av}{3}-\frac{v^{2}}{3}+2A}{-\frac{v}{3}}
Divide both sides by -\frac{1}{3}v.
V=\frac{-\frac{2Av}{3}-\frac{v^{2}}{3}+2A}{-\frac{v}{3}}
Dividing by -\frac{1}{3}v undoes the multiplication by -\frac{1}{3}v.
V=v+2A-\frac{6A}{v}
Divide -\frac{v^{2}}{3}+2A-\frac{2Av}{3} by -\frac{1}{3}v.