Evaluate
\frac{\sqrt{2}}{4}\approx 0.353553391
Share
Copied to clipboard
\frac{\frac{1}{3}}{\sqrt{\frac{8}{9}}}\times 1
Divide \sqrt{\frac{8}{9}} by \sqrt{\frac{8}{9}} to get 1.
\frac{\frac{1}{3}}{\frac{\sqrt{8}}{\sqrt{9}}}\times 1
Rewrite the square root of the division \sqrt{\frac{8}{9}} as the division of square roots \frac{\sqrt{8}}{\sqrt{9}}.
\frac{\frac{1}{3}}{\frac{2\sqrt{2}}{\sqrt{9}}}\times 1
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\frac{1}{3}}{\frac{2\sqrt{2}}{3}}\times 1
Calculate the square root of 9 and get 3.
\frac{3}{3\times 2\sqrt{2}}\times 1
Divide \frac{1}{3} by \frac{2\sqrt{2}}{3} by multiplying \frac{1}{3} by the reciprocal of \frac{2\sqrt{2}}{3}.
\frac{3\sqrt{2}}{3\times 2\left(\sqrt{2}\right)^{2}}\times 1
Rationalize the denominator of \frac{3}{3\times 2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{3\sqrt{2}}{3\times 2\times 2}\times 1
The square of \sqrt{2} is 2.
\frac{\sqrt{2}}{2\times 2}\times 1
Cancel out 3 in both numerator and denominator.
\frac{\sqrt{2}}{4}\times 1
Multiply 2 and 2 to get 4.
\frac{\sqrt{2}}{4}
Express \frac{\sqrt{2}}{4}\times 1 as a single fraction.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}