\frac { \frac { 1 } { 3 } \cdot ( 3 ) ^ { - 1 } + 0,25 } { \frac { 1 } { 3 } \cdot ( \frac { 33 } { 50 } - 1 ) } =
Evaluate
-\frac{325}{102}\approx -3,18627451
Factor
-\frac{325}{102} = -3\frac{19}{102} = -3.1862745098039214
Share
Copied to clipboard
\frac{\frac{1}{3}\times \frac{1}{3}+0,25}{\frac{1}{3}\left(\frac{33}{50}-1\right)}
Calculate 3 to the power of -1 and get \frac{1}{3}.
\frac{\frac{1}{9}+0,25}{\frac{1}{3}\left(\frac{33}{50}-1\right)}
Multiply \frac{1}{3} and \frac{1}{3} to get \frac{1}{9}.
\frac{\frac{13}{36}}{\frac{1}{3}\left(\frac{33}{50}-1\right)}
Add \frac{1}{9} and 0,25 to get \frac{13}{36}.
\frac{\frac{13}{36}}{\frac{1}{3}\left(-\frac{17}{50}\right)}
Subtract 1 from \frac{33}{50} to get -\frac{17}{50}.
\frac{\frac{13}{36}}{-\frac{17}{150}}
Multiply \frac{1}{3} and -\frac{17}{50} to get -\frac{17}{150}.
\frac{13}{36}\left(-\frac{150}{17}\right)
Divide \frac{13}{36} by -\frac{17}{150} by multiplying \frac{13}{36} by the reciprocal of -\frac{17}{150}.
-\frac{325}{102}
Multiply \frac{13}{36} and -\frac{150}{17} to get -\frac{325}{102}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}