Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{1}{2x^{2}-2}}{\frac{2}{x+1}+\frac{x}{\left(x-3\right)\left(x+1\right)}}
Factor x^{2}-2x-3.
\frac{\frac{1}{2x^{2}-2}}{\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}+\frac{x}{\left(x-3\right)\left(x+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and \left(x-3\right)\left(x+1\right) is \left(x-3\right)\left(x+1\right). Multiply \frac{2}{x+1} times \frac{x-3}{x-3}.
\frac{\frac{1}{2x^{2}-2}}{\frac{2\left(x-3\right)+x}{\left(x-3\right)\left(x+1\right)}}
Since \frac{2\left(x-3\right)}{\left(x-3\right)\left(x+1\right)} and \frac{x}{\left(x-3\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{1}{2x^{2}-2}}{\frac{2x-6+x}{\left(x-3\right)\left(x+1\right)}}
Do the multiplications in 2\left(x-3\right)+x.
\frac{\frac{1}{2x^{2}-2}}{\frac{3x-6}{\left(x-3\right)\left(x+1\right)}}
Combine like terms in 2x-6+x.
\frac{\left(x-3\right)\left(x+1\right)}{\left(2x^{2}-2\right)\left(3x-6\right)}
Divide \frac{1}{2x^{2}-2} by \frac{3x-6}{\left(x-3\right)\left(x+1\right)} by multiplying \frac{1}{2x^{2}-2} by the reciprocal of \frac{3x-6}{\left(x-3\right)\left(x+1\right)}.
\frac{\left(x-3\right)\left(x+1\right)}{2\times 3\left(x-2\right)\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored.
\frac{x-3}{2\times 3\left(x-2\right)\left(x-1\right)}
Cancel out x+1 in both numerator and denominator.
\frac{x-3}{6x^{2}-18x+12}
Expand the expression.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{2x^{2}-2}}{\frac{2}{x+1}+\frac{x}{\left(x-3\right)\left(x+1\right)}})
Factor x^{2}-2x-3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{2x^{2}-2}}{\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}+\frac{x}{\left(x-3\right)\left(x+1\right)}})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and \left(x-3\right)\left(x+1\right) is \left(x-3\right)\left(x+1\right). Multiply \frac{2}{x+1} times \frac{x-3}{x-3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{2x^{2}-2}}{\frac{2\left(x-3\right)+x}{\left(x-3\right)\left(x+1\right)}})
Since \frac{2\left(x-3\right)}{\left(x-3\right)\left(x+1\right)} and \frac{x}{\left(x-3\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{2x^{2}-2}}{\frac{2x-6+x}{\left(x-3\right)\left(x+1\right)}})
Do the multiplications in 2\left(x-3\right)+x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{2x^{2}-2}}{\frac{3x-6}{\left(x-3\right)\left(x+1\right)}})
Combine like terms in 2x-6+x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x-3\right)\left(x+1\right)}{\left(2x^{2}-2\right)\left(3x-6\right)})
Divide \frac{1}{2x^{2}-2} by \frac{3x-6}{\left(x-3\right)\left(x+1\right)} by multiplying \frac{1}{2x^{2}-2} by the reciprocal of \frac{3x-6}{\left(x-3\right)\left(x+1\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x-3\right)\left(x+1\right)}{2\times 3\left(x-2\right)\left(x-1\right)\left(x+1\right)})
Factor the expressions that are not already factored in \frac{\left(x-3\right)\left(x+1\right)}{\left(2x^{2}-2\right)\left(3x-6\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-3}{2\times 3\left(x-2\right)\left(x-1\right)})
Cancel out x+1 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-3}{6\left(x-2\right)\left(x-1\right)})
Multiply 2 and 3 to get 6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-3}{\left(6x-12\right)\left(x-1\right)})
Use the distributive property to multiply 6 by x-2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-3}{6x^{2}-18x+12})
Use the distributive property to multiply 6x-12 by x-1 and combine like terms.
\frac{\left(6x^{2}-18x^{1}+12\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-3)-\left(x^{1}-3\right)\frac{\mathrm{d}}{\mathrm{d}x}(6x^{2}-18x^{1}+12)}{\left(6x^{2}-18x^{1}+12\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(6x^{2}-18x^{1}+12\right)x^{1-1}-\left(x^{1}-3\right)\left(2\times 6x^{2-1}-18x^{1-1}\right)}{\left(6x^{2}-18x^{1}+12\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(6x^{2}-18x^{1}+12\right)x^{0}-\left(x^{1}-3\right)\left(12x^{1}-18x^{0}\right)}{\left(6x^{2}-18x^{1}+12\right)^{2}}
Simplify.
\frac{6x^{2}x^{0}-18x^{1}x^{0}+12x^{0}-\left(x^{1}-3\right)\left(12x^{1}-18x^{0}\right)}{\left(6x^{2}-18x^{1}+12\right)^{2}}
Multiply 6x^{2}-18x^{1}+12 times x^{0}.
\frac{6x^{2}x^{0}-18x^{1}x^{0}+12x^{0}-\left(x^{1}\times 12x^{1}+x^{1}\left(-18\right)x^{0}-3\times 12x^{1}-3\left(-18\right)x^{0}\right)}{\left(6x^{2}-18x^{1}+12\right)^{2}}
Multiply x^{1}-3 times 12x^{1}-18x^{0}.
\frac{6x^{2}-18x^{1}+12x^{0}-\left(12x^{1+1}-18x^{1}-3\times 12x^{1}-3\left(-18\right)x^{0}\right)}{\left(6x^{2}-18x^{1}+12\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{6x^{2}-18x^{1}+12x^{0}-\left(12x^{2}-18x^{1}-36x^{1}+54x^{0}\right)}{\left(6x^{2}-18x^{1}+12\right)^{2}}
Simplify.
\frac{-6x^{2}+36x^{1}-42x^{0}}{\left(6x^{2}-18x^{1}+12\right)^{2}}
Combine like terms.
\frac{-6x^{2}+36x-42x^{0}}{\left(6x^{2}-18x+12\right)^{2}}
For any term t, t^{1}=t.
\frac{-6x^{2}+36x-42}{\left(6x^{2}-18x+12\right)^{2}}
For any term t except 0, t^{0}=1.