Solve for x
x\in \left(-14,-4\right)
Graph
Share
Copied to clipboard
4+x>0 4+x<0
Denominator 4+x cannot be zero since division by zero is not defined. There are two cases.
x>-4
Consider the case when 4+x is positive. Move 4 to the right hand side.
\frac{1}{2}x-3>4+x
The initial inequality does not change the direction when multiplied by 4+x for 4+x>0.
\frac{1}{2}x-x>3+4
Move the terms containing x to the left hand side and all other terms to the right hand side.
-\frac{1}{2}x>7
Combine like terms.
x<-14
Divide both sides by -\frac{1}{2}. Since -\frac{1}{2} is negative, the inequality direction is changed.
x\in \emptyset
Consider condition x>-4 specified above.
x<-4
Now consider the case when 4+x is negative. Move 4 to the right hand side.
\frac{1}{2}x-3<4+x
The initial inequality changes the direction when multiplied by 4+x for 4+x<0.
\frac{1}{2}x-x<3+4
Move the terms containing x to the left hand side and all other terms to the right hand side.
-\frac{1}{2}x<7
Combine like terms.
x>-14
Divide both sides by -\frac{1}{2}. Since -\frac{1}{2} is negative, the inequality direction is changed.
x\in \left(-14,-4\right)
Consider condition x<-4 specified above.
x\in \left(-14,-4\right)
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}