Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\frac{\frac{1}{2}-\frac{2}{2}+2\times 1}{\frac{1}{\sqrt{3}}\times \frac{\sqrt{3}}{1}}
Convert 1 to fraction \frac{2}{2}.
\frac{\frac{1-2}{2}+2\times 1}{\frac{1}{\sqrt{3}}\times \frac{\sqrt{3}}{1}}
Since \frac{1}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{1}{2}+2\times 1}{\frac{1}{\sqrt{3}}\times \frac{\sqrt{3}}{1}}
Subtract 2 from 1 to get -1.
\frac{-\frac{1}{2}+2}{\frac{1}{\sqrt{3}}\times \frac{\sqrt{3}}{1}}
Multiply 2 and 1 to get 2.
\frac{-\frac{1}{2}+\frac{4}{2}}{\frac{1}{\sqrt{3}}\times \frac{\sqrt{3}}{1}}
Convert 2 to fraction \frac{4}{2}.
\frac{\frac{-1+4}{2}}{\frac{1}{\sqrt{3}}\times \frac{\sqrt{3}}{1}}
Since -\frac{1}{2} and \frac{4}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{3}{2}}{\frac{1}{\sqrt{3}}\times \frac{\sqrt{3}}{1}}
Add -1 and 4 to get 3.
\frac{\frac{3}{2}}{\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\times \frac{\sqrt{3}}{1}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{3}{2}}{\frac{\sqrt{3}}{3}\times \frac{\sqrt{3}}{1}}
The square of \sqrt{3} is 3.
\frac{\frac{3}{2}}{\frac{\sqrt{3}}{3}\sqrt{3}}
Anything divided by one gives itself.
\frac{\frac{3}{2}}{\frac{\sqrt{3}\sqrt{3}}{3}}
Express \frac{\sqrt{3}}{3}\sqrt{3} as a single fraction.
\frac{3\times 3}{2\sqrt{3}\sqrt{3}}
Divide \frac{3}{2} by \frac{\sqrt{3}\sqrt{3}}{3} by multiplying \frac{3}{2} by the reciprocal of \frac{\sqrt{3}\sqrt{3}}{3}.
\frac{3\times 3\sqrt{3}}{2\left(\sqrt{3}\right)^{2}\sqrt{3}}
Rationalize the denominator of \frac{3\times 3}{2\sqrt{3}\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{3\times 3\sqrt{3}}{2\times 3\sqrt{3}}
The square of \sqrt{3} is 3.
\frac{3\times 3}{2\times 3}
Cancel out \sqrt{3} in both numerator and denominator.
\frac{9}{2\times 3}
Multiply 3 and 3 to get 9.
\frac{9}{6}
Multiply 2 and 3 to get 6.
\frac{3}{2}
Reduce the fraction \frac{9}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}