Solve for x
x=5
x=10
Graph
Share
Copied to clipboard
\left(20x-300\right)\times \frac{1}{2}-20x\times \frac{1}{2}=3x\left(x-15\right)
Variable x cannot be equal to any of the values 0,15 since division by zero is not defined. Multiply both sides of the equation by 20x\left(x-15\right), the least common multiple of x,15-x,20.
10x-150-20x\times \frac{1}{2}=3x\left(x-15\right)
Use the distributive property to multiply 20x-300 by \frac{1}{2}.
10x-150-10x=3x\left(x-15\right)
Multiply -20 and \frac{1}{2} to get -10.
-150=3x\left(x-15\right)
Combine 10x and -10x to get 0.
-150=3x^{2}-45x
Use the distributive property to multiply 3x by x-15.
3x^{2}-45x=-150
Swap sides so that all variable terms are on the left hand side.
3x^{2}-45x+150=0
Add 150 to both sides.
x=\frac{-\left(-45\right)±\sqrt{\left(-45\right)^{2}-4\times 3\times 150}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -45 for b, and 150 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-45\right)±\sqrt{2025-4\times 3\times 150}}{2\times 3}
Square -45.
x=\frac{-\left(-45\right)±\sqrt{2025-12\times 150}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-45\right)±\sqrt{2025-1800}}{2\times 3}
Multiply -12 times 150.
x=\frac{-\left(-45\right)±\sqrt{225}}{2\times 3}
Add 2025 to -1800.
x=\frac{-\left(-45\right)±15}{2\times 3}
Take the square root of 225.
x=\frac{45±15}{2\times 3}
The opposite of -45 is 45.
x=\frac{45±15}{6}
Multiply 2 times 3.
x=\frac{60}{6}
Now solve the equation x=\frac{45±15}{6} when ± is plus. Add 45 to 15.
x=10
Divide 60 by 6.
x=\frac{30}{6}
Now solve the equation x=\frac{45±15}{6} when ± is minus. Subtract 15 from 45.
x=5
Divide 30 by 6.
x=10 x=5
The equation is now solved.
\left(20x-300\right)\times \frac{1}{2}-20x\times \frac{1}{2}=3x\left(x-15\right)
Variable x cannot be equal to any of the values 0,15 since division by zero is not defined. Multiply both sides of the equation by 20x\left(x-15\right), the least common multiple of x,15-x,20.
10x-150-20x\times \frac{1}{2}=3x\left(x-15\right)
Use the distributive property to multiply 20x-300 by \frac{1}{2}.
10x-150-10x=3x\left(x-15\right)
Multiply -20 and \frac{1}{2} to get -10.
-150=3x\left(x-15\right)
Combine 10x and -10x to get 0.
-150=3x^{2}-45x
Use the distributive property to multiply 3x by x-15.
3x^{2}-45x=-150
Swap sides so that all variable terms are on the left hand side.
\frac{3x^{2}-45x}{3}=-\frac{150}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{45}{3}\right)x=-\frac{150}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-15x=-\frac{150}{3}
Divide -45 by 3.
x^{2}-15x=-50
Divide -150 by 3.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=-50+\left(-\frac{15}{2}\right)^{2}
Divide -15, the coefficient of the x term, by 2 to get -\frac{15}{2}. Then add the square of -\frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-15x+\frac{225}{4}=-50+\frac{225}{4}
Square -\frac{15}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-15x+\frac{225}{4}=\frac{25}{4}
Add -50 to \frac{225}{4}.
\left(x-\frac{15}{2}\right)^{2}=\frac{25}{4}
Factor x^{2}-15x+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x-\frac{15}{2}=\frac{5}{2} x-\frac{15}{2}=-\frac{5}{2}
Simplify.
x=10 x=5
Add \frac{15}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}