Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2}{2\left(2+\sqrt{3}\right)}
Divide \frac{1}{2} by \frac{2+\sqrt{3}}{2} by multiplying \frac{1}{2} by the reciprocal of \frac{2+\sqrt{3}}{2}.
\frac{2}{4+2\sqrt{3}}
Use the distributive property to multiply 2 by 2+\sqrt{3}.
\frac{2\left(4-2\sqrt{3}\right)}{\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)}
Rationalize the denominator of \frac{2}{4+2\sqrt{3}} by multiplying numerator and denominator by 4-2\sqrt{3}.
\frac{2\left(4-2\sqrt{3}\right)}{4^{2}-\left(2\sqrt{3}\right)^{2}}
Consider \left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(4-2\sqrt{3}\right)}{16-\left(2\sqrt{3}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{2\left(4-2\sqrt{3}\right)}{16-2^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{2\left(4-2\sqrt{3}\right)}{16-4\left(\sqrt{3}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{2\left(4-2\sqrt{3}\right)}{16-4\times 3}
The square of \sqrt{3} is 3.
\frac{2\left(4-2\sqrt{3}\right)}{16-12}
Multiply 4 and 3 to get 12.
\frac{2\left(4-2\sqrt{3}\right)}{4}
Subtract 12 from 16 to get 4.
\frac{1}{2}\left(4-2\sqrt{3}\right)
Divide 2\left(4-2\sqrt{3}\right) by 4 to get \frac{1}{2}\left(4-2\sqrt{3}\right).
\frac{1}{2}\times 4+\frac{1}{2}\left(-2\right)\sqrt{3}
Use the distributive property to multiply \frac{1}{2} by 4-2\sqrt{3}.
\frac{4}{2}+\frac{1}{2}\left(-2\right)\sqrt{3}
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
2+\frac{1}{2}\left(-2\right)\sqrt{3}
Divide 4 by 2 to get 2.
2+\frac{-2}{2}\sqrt{3}
Multiply \frac{1}{2} and -2 to get \frac{-2}{2}.
2-\sqrt{3}
Divide -2 by 2 to get -1.