Evaluate
\frac{\sqrt{2}+1-2\sqrt{3}}{2}\approx -0.524944026
Factor
\frac{\sqrt{2} + 1 - 2 \sqrt{3}}{2} = -0.5249440263823297
Share
Copied to clipboard
\frac{\sqrt{2}}{2}+\frac{1}{2}-\frac{\frac{\sqrt{3}}{2}}{1}-\frac{\frac{\sqrt{3}}{2}}{1}
Divide \frac{1}{2} by \frac{1}{\sqrt{2}} by multiplying \frac{1}{2} by the reciprocal of \frac{1}{\sqrt{2}}.
\frac{\sqrt{2}}{2}+\frac{1}{2}-\frac{\sqrt{3}}{2}-\frac{\frac{\sqrt{3}}{2}}{1}
Anything divided by one gives itself.
\frac{\sqrt{2}}{2}+\frac{1}{2}-\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}
Anything divided by one gives itself.
\frac{\sqrt{2}}{2}+\frac{1}{2}-\sqrt{3}
Combine -\frac{\sqrt{3}}{2} and -\frac{\sqrt{3}}{2} to get -\sqrt{3}.
\frac{\sqrt{2}+1}{2}-\sqrt{3}
Since \frac{\sqrt{2}}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{\sqrt{2}+1}{2}-\frac{2\sqrt{3}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{3} times \frac{2}{2}.
\frac{\sqrt{2}+1-2\sqrt{3}}{2}
Since \frac{\sqrt{2}+1}{2} and \frac{2\sqrt{3}}{2} have the same denominator, subtract them by subtracting their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}