Evaluate
\frac{4\sqrt{3}}{3}+\sqrt{2}-2\approx 1.723614639
Factor
\frac{3 \sqrt{2} + 4 \sqrt{3} - 6}{3} = 1.723614639131598
Share
Copied to clipboard
\frac{\frac{1}{2}}{\frac{\sqrt{3}-\sqrt{2}}{2}}-\left(1-\frac{\sqrt{3}}{3}\right)-1
Since \frac{\sqrt{3}}{2} and \frac{\sqrt{2}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{2\left(\sqrt{3}-\sqrt{2}\right)}-\left(1-\frac{\sqrt{3}}{3}\right)-1
Divide \frac{1}{2} by \frac{\sqrt{3}-\sqrt{2}}{2} by multiplying \frac{1}{2} by the reciprocal of \frac{\sqrt{3}-\sqrt{2}}{2}.
\frac{2}{2\left(\sqrt{3}-\sqrt{2}\right)}-\left(\frac{3}{3}-\frac{\sqrt{3}}{3}\right)-1
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\frac{2}{2\left(\sqrt{3}-\sqrt{2}\right)}-\frac{3-\sqrt{3}}{3}-1
Since \frac{3}{3} and \frac{\sqrt{3}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{2\left(\sqrt{3}-\sqrt{2}\right)}-\frac{3-\sqrt{3}}{3}-\frac{2\left(\sqrt{3}-\sqrt{2}\right)}{2\left(\sqrt{3}-\sqrt{2}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2\left(\sqrt{3}-\sqrt{2}\right)}{2\left(\sqrt{3}-\sqrt{2}\right)}.
\frac{2-2\left(\sqrt{3}-\sqrt{2}\right)}{2\left(\sqrt{3}-\sqrt{2}\right)}-\frac{3-\sqrt{3}}{3}
Since \frac{2}{2\left(\sqrt{3}-\sqrt{2}\right)} and \frac{2\left(\sqrt{3}-\sqrt{2}\right)}{2\left(\sqrt{3}-\sqrt{2}\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2-2\sqrt{3}+2\sqrt{2}}{2\left(\sqrt{3}-\sqrt{2}\right)}-\frac{3-\sqrt{3}}{3}
Do the multiplications in 2-2\left(\sqrt{3}-\sqrt{2}\right).
\frac{2-2\sqrt{3}+2\sqrt{2}}{2\sqrt{3}-2\sqrt{2}}-\frac{3-\sqrt{3}}{3}
Use the distributive property to multiply 2 by \sqrt{3}-\sqrt{2}.
\frac{\left(2-2\sqrt{3}+2\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{\left(2\sqrt{3}-2\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}-\frac{3-\sqrt{3}}{3}
Rationalize the denominator of \frac{2-2\sqrt{3}+2\sqrt{2}}{2\sqrt{3}-2\sqrt{2}} by multiplying numerator and denominator by 2\sqrt{3}+2\sqrt{2}.
\frac{\left(2-2\sqrt{3}+2\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{\left(2\sqrt{3}\right)^{2}-\left(-2\sqrt{2}\right)^{2}}-\frac{3-\sqrt{3}}{3}
Consider \left(2\sqrt{3}-2\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-2\sqrt{3}+2\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{2^{2}\left(\sqrt{3}\right)^{2}-\left(-2\sqrt{2}\right)^{2}}-\frac{3-\sqrt{3}}{3}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{\left(2-2\sqrt{3}+2\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{4\left(\sqrt{3}\right)^{2}-\left(-2\sqrt{2}\right)^{2}}-\frac{3-\sqrt{3}}{3}
Calculate 2 to the power of 2 and get 4.
\frac{\left(2-2\sqrt{3}+2\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{4\times 3-\left(-2\sqrt{2}\right)^{2}}-\frac{3-\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{\left(2-2\sqrt{3}+2\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{12-\left(-2\sqrt{2}\right)^{2}}-\frac{3-\sqrt{3}}{3}
Multiply 4 and 3 to get 12.
\frac{\left(2-2\sqrt{3}+2\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{12-\left(-2\right)^{2}\left(\sqrt{2}\right)^{2}}-\frac{3-\sqrt{3}}{3}
Expand \left(-2\sqrt{2}\right)^{2}.
\frac{\left(2-2\sqrt{3}+2\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{12-4\left(\sqrt{2}\right)^{2}}-\frac{3-\sqrt{3}}{3}
Calculate -2 to the power of 2 and get 4.
\frac{\left(2-2\sqrt{3}+2\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{12-4\times 2}-\frac{3-\sqrt{3}}{3}
The square of \sqrt{2} is 2.
\frac{\left(2-2\sqrt{3}+2\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{12-8}-\frac{3-\sqrt{3}}{3}
Multiply 4 and 2 to get 8.
\frac{\left(2-2\sqrt{3}+2\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{4}-\frac{3-\sqrt{3}}{3}
Subtract 8 from 12 to get 4.
\frac{3\left(2-2\sqrt{3}+2\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{12}-\frac{4\left(3-\sqrt{3}\right)}{12}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 3 is 12. Multiply \frac{\left(2-2\sqrt{3}+2\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{4} times \frac{3}{3}. Multiply \frac{3-\sqrt{3}}{3} times \frac{4}{4}.
\frac{3\left(2-2\sqrt{3}+2\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)-4\left(3-\sqrt{3}\right)}{12}
Since \frac{3\left(2-2\sqrt{3}+2\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{12} and \frac{4\left(3-\sqrt{3}\right)}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{12\sqrt{3}+12\sqrt{2}-36-12\sqrt{6}+12\sqrt{6}+24-12+4\sqrt{3}}{12}
Do the multiplications in 3\left(2-2\sqrt{3}+2\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)-4\left(3-\sqrt{3}\right).
\frac{16\sqrt{3}+12\sqrt{2}-24}{12}
Do the calculations in 12\sqrt{3}+12\sqrt{2}-36-12\sqrt{6}+12\sqrt{6}+24-12+4\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}