Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\frac{\frac{1}{12}+\frac{52}{12}}{1-\frac{11}{12}\times \frac{\sqrt{3}}{3}}
Least common multiple of 12 and 3 is 12. Convert \frac{1}{12} and \frac{13}{3} to fractions with denominator 12.
\frac{\frac{1+52}{12}}{1-\frac{11}{12}\times \frac{\sqrt{3}}{3}}
Since \frac{1}{12} and \frac{52}{12} have the same denominator, add them by adding their numerators.
\frac{\frac{53}{12}}{1-\frac{11}{12}\times \frac{\sqrt{3}}{3}}
Add 1 and 52 to get 53.
\frac{\frac{53}{12}}{1-\frac{11\sqrt{3}}{12\times 3}}
Multiply \frac{11}{12} times \frac{\sqrt{3}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{53}{12}}{1-\frac{11\sqrt{3}}{36}}
Multiply 12 and 3 to get 36.
\frac{\frac{53}{12}}{\frac{36}{36}-\frac{11\sqrt{3}}{36}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{36}{36}.
\frac{\frac{53}{12}}{\frac{36-11\sqrt{3}}{36}}
Since \frac{36}{36} and \frac{11\sqrt{3}}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{53\times 36}{12\left(36-11\sqrt{3}\right)}
Divide \frac{53}{12} by \frac{36-11\sqrt{3}}{36} by multiplying \frac{53}{12} by the reciprocal of \frac{36-11\sqrt{3}}{36}.
\frac{3\times 53}{-11\sqrt{3}+36}
Cancel out 12 in both numerator and denominator.
\frac{3\times 53\left(-11\sqrt{3}-36\right)}{\left(-11\sqrt{3}+36\right)\left(-11\sqrt{3}-36\right)}
Rationalize the denominator of \frac{3\times 53}{-11\sqrt{3}+36} by multiplying numerator and denominator by -11\sqrt{3}-36.
\frac{3\times 53\left(-11\sqrt{3}-36\right)}{\left(-11\sqrt{3}\right)^{2}-36^{2}}
Consider \left(-11\sqrt{3}+36\right)\left(-11\sqrt{3}-36\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{159\left(-11\sqrt{3}-36\right)}{\left(-11\sqrt{3}\right)^{2}-36^{2}}
Multiply 3 and 53 to get 159.
\frac{159\left(-11\sqrt{3}-36\right)}{\left(-11\right)^{2}\left(\sqrt{3}\right)^{2}-36^{2}}
Expand \left(-11\sqrt{3}\right)^{2}.
\frac{159\left(-11\sqrt{3}-36\right)}{121\left(\sqrt{3}\right)^{2}-36^{2}}
Calculate -11 to the power of 2 and get 121.
\frac{159\left(-11\sqrt{3}-36\right)}{121\times 3-36^{2}}
The square of \sqrt{3} is 3.
\frac{159\left(-11\sqrt{3}-36\right)}{363-36^{2}}
Multiply 121 and 3 to get 363.
\frac{159\left(-11\sqrt{3}-36\right)}{363-1296}
Calculate 36 to the power of 2 and get 1296.
\frac{159\left(-11\sqrt{3}-36\right)}{-933}
Subtract 1296 from 363 to get -933.
-\frac{53}{311}\left(-11\sqrt{3}-36\right)
Divide 159\left(-11\sqrt{3}-36\right) by -933 to get -\frac{53}{311}\left(-11\sqrt{3}-36\right).
-\frac{53}{311}\left(-11\right)\sqrt{3}-\frac{53}{311}\left(-36\right)
Use the distributive property to multiply -\frac{53}{311} by -11\sqrt{3}-36.
\frac{-53\left(-11\right)}{311}\sqrt{3}-\frac{53}{311}\left(-36\right)
Express -\frac{53}{311}\left(-11\right) as a single fraction.
\frac{583}{311}\sqrt{3}-\frac{53}{311}\left(-36\right)
Multiply -53 and -11 to get 583.
\frac{583}{311}\sqrt{3}+\frac{-53\left(-36\right)}{311}
Express -\frac{53}{311}\left(-36\right) as a single fraction.
\frac{583}{311}\sqrt{3}+\frac{1908}{311}
Multiply -53 and -36 to get 1908.