Evaluate
\frac{2}{3\left(1-t^{2}\right)}
Expand
\frac{2}{3\left(1-t^{2}\right)}
Share
Copied to clipboard
\frac{\frac{-t+1}{\left(t+1\right)\left(-t+1\right)}+\frac{t+1}{\left(t+1\right)\left(-t+1\right)}-2}{3t^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1+t and 1-t is \left(t+1\right)\left(-t+1\right). Multiply \frac{1}{1+t} times \frac{-t+1}{-t+1}. Multiply \frac{1}{1-t} times \frac{t+1}{t+1}.
\frac{\frac{-t+1+t+1}{\left(t+1\right)\left(-t+1\right)}-2}{3t^{2}}
Since \frac{-t+1}{\left(t+1\right)\left(-t+1\right)} and \frac{t+1}{\left(t+1\right)\left(-t+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2}{\left(t+1\right)\left(-t+1\right)}-2}{3t^{2}}
Combine like terms in -t+1+t+1.
\frac{\frac{2}{\left(t+1\right)\left(-t+1\right)}-\frac{2\left(t+1\right)\left(-t+1\right)}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{\left(t+1\right)\left(-t+1\right)}{\left(t+1\right)\left(-t+1\right)}.
\frac{\frac{2-2\left(t+1\right)\left(-t+1\right)}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}}
Since \frac{2}{\left(t+1\right)\left(-t+1\right)} and \frac{2\left(t+1\right)\left(-t+1\right)}{\left(t+1\right)\left(-t+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2+2t^{2}-2t+2t-2}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}}
Do the multiplications in 2-2\left(t+1\right)\left(-t+1\right).
\frac{\frac{2t^{2}}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}}
Combine like terms in 2+2t^{2}-2t+2t-2.
\frac{2t^{2}}{\left(t+1\right)\left(-t+1\right)\times 3t^{2}}
Express \frac{\frac{2t^{2}}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}} as a single fraction.
\frac{2}{3\left(t+1\right)\left(-t+1\right)}
Cancel out t^{2} in both numerator and denominator.
\frac{2}{\left(3t+3\right)\left(-t+1\right)}
Use the distributive property to multiply 3 by t+1.
\frac{2}{-3t^{2}+3}
Use the distributive property to multiply 3t+3 by -t+1 and combine like terms.
\frac{\frac{-t+1}{\left(t+1\right)\left(-t+1\right)}+\frac{t+1}{\left(t+1\right)\left(-t+1\right)}-2}{3t^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1+t and 1-t is \left(t+1\right)\left(-t+1\right). Multiply \frac{1}{1+t} times \frac{-t+1}{-t+1}. Multiply \frac{1}{1-t} times \frac{t+1}{t+1}.
\frac{\frac{-t+1+t+1}{\left(t+1\right)\left(-t+1\right)}-2}{3t^{2}}
Since \frac{-t+1}{\left(t+1\right)\left(-t+1\right)} and \frac{t+1}{\left(t+1\right)\left(-t+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2}{\left(t+1\right)\left(-t+1\right)}-2}{3t^{2}}
Combine like terms in -t+1+t+1.
\frac{\frac{2}{\left(t+1\right)\left(-t+1\right)}-\frac{2\left(t+1\right)\left(-t+1\right)}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{\left(t+1\right)\left(-t+1\right)}{\left(t+1\right)\left(-t+1\right)}.
\frac{\frac{2-2\left(t+1\right)\left(-t+1\right)}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}}
Since \frac{2}{\left(t+1\right)\left(-t+1\right)} and \frac{2\left(t+1\right)\left(-t+1\right)}{\left(t+1\right)\left(-t+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2+2t^{2}-2t+2t-2}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}}
Do the multiplications in 2-2\left(t+1\right)\left(-t+1\right).
\frac{\frac{2t^{2}}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}}
Combine like terms in 2+2t^{2}-2t+2t-2.
\frac{2t^{2}}{\left(t+1\right)\left(-t+1\right)\times 3t^{2}}
Express \frac{\frac{2t^{2}}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}} as a single fraction.
\frac{2}{3\left(t+1\right)\left(-t+1\right)}
Cancel out t^{2} in both numerator and denominator.
\frac{2}{\left(3t+3\right)\left(-t+1\right)}
Use the distributive property to multiply 3 by t+1.
\frac{2}{-3t^{2}+3}
Use the distributive property to multiply 3t+3 by -t+1 and combine like terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}