Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{-t+1}{\left(t+1\right)\left(-t+1\right)}+\frac{t+1}{\left(t+1\right)\left(-t+1\right)}-2}{3t^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1+t and 1-t is \left(t+1\right)\left(-t+1\right). Multiply \frac{1}{1+t} times \frac{-t+1}{-t+1}. Multiply \frac{1}{1-t} times \frac{t+1}{t+1}.
\frac{\frac{-t+1+t+1}{\left(t+1\right)\left(-t+1\right)}-2}{3t^{2}}
Since \frac{-t+1}{\left(t+1\right)\left(-t+1\right)} and \frac{t+1}{\left(t+1\right)\left(-t+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2}{\left(t+1\right)\left(-t+1\right)}-2}{3t^{2}}
Combine like terms in -t+1+t+1.
\frac{\frac{2}{\left(t+1\right)\left(-t+1\right)}-\frac{2\left(t+1\right)\left(-t+1\right)}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{\left(t+1\right)\left(-t+1\right)}{\left(t+1\right)\left(-t+1\right)}.
\frac{\frac{2-2\left(t+1\right)\left(-t+1\right)}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}}
Since \frac{2}{\left(t+1\right)\left(-t+1\right)} and \frac{2\left(t+1\right)\left(-t+1\right)}{\left(t+1\right)\left(-t+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2+2t^{2}-2t+2t-2}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}}
Do the multiplications in 2-2\left(t+1\right)\left(-t+1\right).
\frac{\frac{2t^{2}}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}}
Combine like terms in 2+2t^{2}-2t+2t-2.
\frac{2t^{2}}{\left(t+1\right)\left(-t+1\right)\times 3t^{2}}
Express \frac{\frac{2t^{2}}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}} as a single fraction.
\frac{2}{3\left(t+1\right)\left(-t+1\right)}
Cancel out t^{2} in both numerator and denominator.
\frac{2}{\left(3t+3\right)\left(-t+1\right)}
Use the distributive property to multiply 3 by t+1.
\frac{2}{-3t^{2}+3}
Use the distributive property to multiply 3t+3 by -t+1 and combine like terms.
\frac{\frac{-t+1}{\left(t+1\right)\left(-t+1\right)}+\frac{t+1}{\left(t+1\right)\left(-t+1\right)}-2}{3t^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1+t and 1-t is \left(t+1\right)\left(-t+1\right). Multiply \frac{1}{1+t} times \frac{-t+1}{-t+1}. Multiply \frac{1}{1-t} times \frac{t+1}{t+1}.
\frac{\frac{-t+1+t+1}{\left(t+1\right)\left(-t+1\right)}-2}{3t^{2}}
Since \frac{-t+1}{\left(t+1\right)\left(-t+1\right)} and \frac{t+1}{\left(t+1\right)\left(-t+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2}{\left(t+1\right)\left(-t+1\right)}-2}{3t^{2}}
Combine like terms in -t+1+t+1.
\frac{\frac{2}{\left(t+1\right)\left(-t+1\right)}-\frac{2\left(t+1\right)\left(-t+1\right)}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{\left(t+1\right)\left(-t+1\right)}{\left(t+1\right)\left(-t+1\right)}.
\frac{\frac{2-2\left(t+1\right)\left(-t+1\right)}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}}
Since \frac{2}{\left(t+1\right)\left(-t+1\right)} and \frac{2\left(t+1\right)\left(-t+1\right)}{\left(t+1\right)\left(-t+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2+2t^{2}-2t+2t-2}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}}
Do the multiplications in 2-2\left(t+1\right)\left(-t+1\right).
\frac{\frac{2t^{2}}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}}
Combine like terms in 2+2t^{2}-2t+2t-2.
\frac{2t^{2}}{\left(t+1\right)\left(-t+1\right)\times 3t^{2}}
Express \frac{\frac{2t^{2}}{\left(t+1\right)\left(-t+1\right)}}{3t^{2}} as a single fraction.
\frac{2}{3\left(t+1\right)\left(-t+1\right)}
Cancel out t^{2} in both numerator and denominator.
\frac{2}{\left(3t+3\right)\left(-t+1\right)}
Use the distributive property to multiply 3 by t+1.
\frac{2}{-3t^{2}+3}
Use the distributive property to multiply 3t+3 by -t+1 and combine like terms.