Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x-4}{\left(x-4\right)\left(x+h-4\right)}-\frac{x+h-4}{\left(x-4\right)\left(x+h-4\right)}}{h}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+h-4 and x-4 is \left(x-4\right)\left(x+h-4\right). Multiply \frac{1}{x+h-4} times \frac{x-4}{x-4}. Multiply \frac{1}{x-4} times \frac{x+h-4}{x+h-4}.
\frac{\frac{x-4-\left(x+h-4\right)}{\left(x-4\right)\left(x+h-4\right)}}{h}
Since \frac{x-4}{\left(x-4\right)\left(x+h-4\right)} and \frac{x+h-4}{\left(x-4\right)\left(x+h-4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x-4-x-h+4}{\left(x-4\right)\left(x+h-4\right)}}{h}
Do the multiplications in x-4-\left(x+h-4\right).
\frac{\frac{-h}{\left(x-4\right)\left(x+h-4\right)}}{h}
Combine like terms in x-4-x-h+4.
\frac{-h}{\left(x-4\right)\left(x+h-4\right)h}
Express \frac{\frac{-h}{\left(x-4\right)\left(x+h-4\right)}}{h} as a single fraction.
\frac{-1}{\left(x-4\right)\left(x+h-4\right)}
Cancel out h in both numerator and denominator.
\frac{-1}{x^{2}+xh-4x-4x-4h+16}
Apply the distributive property by multiplying each term of x-4 by each term of x+h-4.
\frac{-1}{x^{2}+xh-8x-4h+16}
Combine -4x and -4x to get -8x.
\frac{\frac{x-4}{\left(x-4\right)\left(x+h-4\right)}-\frac{x+h-4}{\left(x-4\right)\left(x+h-4\right)}}{h}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+h-4 and x-4 is \left(x-4\right)\left(x+h-4\right). Multiply \frac{1}{x+h-4} times \frac{x-4}{x-4}. Multiply \frac{1}{x-4} times \frac{x+h-4}{x+h-4}.
\frac{\frac{x-4-\left(x+h-4\right)}{\left(x-4\right)\left(x+h-4\right)}}{h}
Since \frac{x-4}{\left(x-4\right)\left(x+h-4\right)} and \frac{x+h-4}{\left(x-4\right)\left(x+h-4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x-4-x-h+4}{\left(x-4\right)\left(x+h-4\right)}}{h}
Do the multiplications in x-4-\left(x+h-4\right).
\frac{\frac{-h}{\left(x-4\right)\left(x+h-4\right)}}{h}
Combine like terms in x-4-x-h+4.
\frac{-h}{\left(x-4\right)\left(x+h-4\right)h}
Express \frac{\frac{-h}{\left(x-4\right)\left(x+h-4\right)}}{h} as a single fraction.
\frac{-1}{\left(x-4\right)\left(x+h-4\right)}
Cancel out h in both numerator and denominator.
\frac{-1}{x^{2}+xh-4x-4x-4h+16}
Apply the distributive property by multiplying each term of x-4 by each term of x+h-4.
\frac{-1}{x^{2}+xh-8x-4h+16}
Combine -4x and -4x to get -8x.