Evaluate
-\frac{\sqrt{15}}{7}+\frac{5}{14}\approx -0.196140478
Share
Copied to clipboard
\frac{\frac{\sqrt{5}-\sqrt{3}}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}}{\frac{1}{\sqrt{5}}-\sqrt{3}}
Rationalize the denominator of \frac{1}{\sqrt{5}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{3}.
\frac{\frac{\sqrt{5}-\sqrt{3}}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}}{\frac{1}{\sqrt{5}}-\sqrt{3}}
Consider \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\frac{\sqrt{5}-\sqrt{3}}{5-3}}{\frac{1}{\sqrt{5}}-\sqrt{3}}
Square \sqrt{5}. Square \sqrt{3}.
\frac{\frac{\sqrt{5}-\sqrt{3}}{2}}{\frac{1}{\sqrt{5}}-\sqrt{3}}
Subtract 3 from 5 to get 2.
\frac{\frac{\sqrt{5}-\sqrt{3}}{2}}{\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-\sqrt{3}}
Rationalize the denominator of \frac{1}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\frac{\sqrt{5}-\sqrt{3}}{2}}{\frac{\sqrt{5}}{5}-\sqrt{3}}
The square of \sqrt{5} is 5.
\frac{\frac{\sqrt{5}-\sqrt{3}}{2}}{\frac{\sqrt{5}}{5}-\frac{5\sqrt{3}}{5}}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{3} times \frac{5}{5}.
\frac{\frac{\sqrt{5}-\sqrt{3}}{2}}{\frac{\sqrt{5}-5\sqrt{3}}{5}}
Since \frac{\sqrt{5}}{5} and \frac{5\sqrt{3}}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\sqrt{5}-\sqrt{3}\right)\times 5}{2\left(\sqrt{5}-5\sqrt{3}\right)}
Divide \frac{\sqrt{5}-\sqrt{3}}{2} by \frac{\sqrt{5}-5\sqrt{3}}{5} by multiplying \frac{\sqrt{5}-\sqrt{3}}{2} by the reciprocal of \frac{\sqrt{5}-5\sqrt{3}}{5}.
\frac{5\sqrt{5}-5\sqrt{3}}{2\left(\sqrt{5}-5\sqrt{3}\right)}
Use the distributive property to multiply \sqrt{5}-\sqrt{3} by 5.
\frac{5\sqrt{5}-5\sqrt{3}}{2\sqrt{5}-10\sqrt{3}}
Use the distributive property to multiply 2 by \sqrt{5}-5\sqrt{3}.
\frac{\left(5\sqrt{5}-5\sqrt{3}\right)\left(2\sqrt{5}+10\sqrt{3}\right)}{\left(2\sqrt{5}-10\sqrt{3}\right)\left(2\sqrt{5}+10\sqrt{3}\right)}
Rationalize the denominator of \frac{5\sqrt{5}-5\sqrt{3}}{2\sqrt{5}-10\sqrt{3}} by multiplying numerator and denominator by 2\sqrt{5}+10\sqrt{3}.
\frac{\left(5\sqrt{5}-5\sqrt{3}\right)\left(2\sqrt{5}+10\sqrt{3}\right)}{\left(2\sqrt{5}\right)^{2}-\left(-10\sqrt{3}\right)^{2}}
Consider \left(2\sqrt{5}-10\sqrt{3}\right)\left(2\sqrt{5}+10\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5\sqrt{5}-5\sqrt{3}\right)\left(2\sqrt{5}+10\sqrt{3}\right)}{2^{2}\left(\sqrt{5}\right)^{2}-\left(-10\sqrt{3}\right)^{2}}
Expand \left(2\sqrt{5}\right)^{2}.
\frac{\left(5\sqrt{5}-5\sqrt{3}\right)\left(2\sqrt{5}+10\sqrt{3}\right)}{4\left(\sqrt{5}\right)^{2}-\left(-10\sqrt{3}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(5\sqrt{5}-5\sqrt{3}\right)\left(2\sqrt{5}+10\sqrt{3}\right)}{4\times 5-\left(-10\sqrt{3}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{\left(5\sqrt{5}-5\sqrt{3}\right)\left(2\sqrt{5}+10\sqrt{3}\right)}{20-\left(-10\sqrt{3}\right)^{2}}
Multiply 4 and 5 to get 20.
\frac{\left(5\sqrt{5}-5\sqrt{3}\right)\left(2\sqrt{5}+10\sqrt{3}\right)}{20-\left(-10\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-10\sqrt{3}\right)^{2}.
\frac{\left(5\sqrt{5}-5\sqrt{3}\right)\left(2\sqrt{5}+10\sqrt{3}\right)}{20-100\left(\sqrt{3}\right)^{2}}
Calculate -10 to the power of 2 and get 100.
\frac{\left(5\sqrt{5}-5\sqrt{3}\right)\left(2\sqrt{5}+10\sqrt{3}\right)}{20-100\times 3}
The square of \sqrt{3} is 3.
\frac{\left(5\sqrt{5}-5\sqrt{3}\right)\left(2\sqrt{5}+10\sqrt{3}\right)}{20-300}
Multiply 100 and 3 to get 300.
\frac{\left(5\sqrt{5}-5\sqrt{3}\right)\left(2\sqrt{5}+10\sqrt{3}\right)}{-280}
Subtract 300 from 20 to get -280.
\frac{10\left(\sqrt{5}\right)^{2}+50\sqrt{3}\sqrt{5}-10\sqrt{3}\sqrt{5}-50\left(\sqrt{3}\right)^{2}}{-280}
Apply the distributive property by multiplying each term of 5\sqrt{5}-5\sqrt{3} by each term of 2\sqrt{5}+10\sqrt{3}.
\frac{10\times 5+50\sqrt{3}\sqrt{5}-10\sqrt{3}\sqrt{5}-50\left(\sqrt{3}\right)^{2}}{-280}
The square of \sqrt{5} is 5.
\frac{50+50\sqrt{3}\sqrt{5}-10\sqrt{3}\sqrt{5}-50\left(\sqrt{3}\right)^{2}}{-280}
Multiply 10 and 5 to get 50.
\frac{50+50\sqrt{15}-10\sqrt{3}\sqrt{5}-50\left(\sqrt{3}\right)^{2}}{-280}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{50+50\sqrt{15}-10\sqrt{15}-50\left(\sqrt{3}\right)^{2}}{-280}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{50+40\sqrt{15}-50\left(\sqrt{3}\right)^{2}}{-280}
Combine 50\sqrt{15} and -10\sqrt{15} to get 40\sqrt{15}.
\frac{50+40\sqrt{15}-50\times 3}{-280}
The square of \sqrt{3} is 3.
\frac{50+40\sqrt{15}-150}{-280}
Multiply -50 and 3 to get -150.
\frac{-100+40\sqrt{15}}{-280}
Subtract 150 from 50 to get -100.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}